簡易檢索 / 詳目顯示

研究生: 陳銘雄
論文名稱: 添加少量Ni於Fe/Si高溫成長垂直奈米碳管之影響及其扮演角色之研究
指導教授: 戴念華
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 82
中文關鍵詞: 垂直奈米碳管催化劑化學狀態
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用熱裂解化學氣相沉積法於快速升降溫系統中高溫成長垂直奈米碳管,以磁控濺鍍Fe催化劑於Si基板上,探討成長參數對於垂直奈米碳管成長高度的影響,其成長參數包含成長時間、催化劑厚度、成長溫度及成長壓力,並探討何種成長參數能有效控制垂直奈米碳管之成長高度。利用XPS分析Fe催化劑於高溫熱處理前、後及成長奈米碳管後化學狀態之差異,進而瞭解成長奈米碳管時Fe催化劑之化學狀態。最後,添加少量Ni於Fe/Si中,形成Fe/Ni/Si催化劑結構,探討對於成長垂直奈米碳管之影響,發現其垂直奈米碳管成長高度是未添加Ni之約5.5倍高,並探討添加少量Ni於此Fe/Ni/Si催化劑結構所扮演之角色。


    摘要……………………………………………………………………Ⅰ Abstract………………………………………………………………Ⅱ 誌謝……………………………………………………………………Ⅲ 總目錄…………………………………………………………………Ⅳ 表目錄…………………………………………………………………Ⅴ 圖目錄…………………………………………………………………Ⅵ 第一章緒論……………………………………………………………1 1-1簡介…………………………………………………………1 1-2奈米碳管的結構與特性……………………………………2 1-3奈米碳管的應用……………………………………………4 1-4研究動機……………………………………………………4 第二章文獻回顧………………………………………………10 2-1奈米碳管成長機制…………………………………………10 2-1-1 碳原子的擴散路徑……………………………………10 2-1-2 碳原子擴散的驅動力…………………………………11 2-1-3 成長機制………………………………………………11 2-2 垂直奈米碳管合成法………………………………………12 2-3 催化劑的化學狀態…………………………………………14 2-4 Fe-Ni催化劑成長碳纖維及奈米碳管……………………16 第三章研究方法與實驗步驟……………………………………30 3-1 研究方法與目的……………………………………………30 3-2 實驗步驟……………………………………………………30 3-2-1 Si基板準備.………………………………………… 30 3-2-2 催化劑製備..…………………………………………30 3-2-3 快速升降溫系統成長垂直奈米碳管..………………31 3-3 製程與分析儀器……………………………………………32 3-3-1 磁控濺鍍系統…………………………………………32 3-3-2 快速升降溫系統………………………………………33 3-3-3 場發射掃描電子顯微鏡(SEM)……………………34 3-3-4 穿透式電子顯微鏡(TEM)…………………………34 3-3-5 微拉曼光譜儀(µ-Raman)…………………………35 3-3-6 電子能譜化學分析儀(ESCA / XPS)……………36 3-3-7 原子力顯微鏡(AFM)………………………………36 第四章結果與討論………………………………………………41 4-1 成長參數對於垂直奈米碳管成長高度之影響……………41 4-1-1 成長時間與垂直奈米碳管成長高度…………………42 4-1-2 催化劑厚度與垂直奈米碳管成長高度………………43 4-1-3 成長溫度與垂直奈米碳管成長高度…………………44 4-1-4 成長壓力與垂直奈米碳管成長高度…………………45 4-2 Fe催化劑的化學狀態分析………………………………46 4-2-1 Fe催化劑於熱處理前之化學狀態……………………46 4-2-2 Fe催化劑於熱處理後之化學狀態……………………48 4-2-3 Fe催化劑於成長垂直奈米碳管後之化學狀態………49 4-3 添加少量Ni於Fe/Si催化劑結構成長垂直奈米碳管……51 4-3-1 Fe/Ni/Si催化劑結構成長垂直奈米碳管……………51 4-3-2 添加少量Ni於Fe/Ni/Si催化劑結構扮演之角色……54 第五章結論…………………………………………………………76 第六章參考文獻……………………………………………………77

    [1] Radushkevich LV, Lukyanovich VM. “O structure ugleroda, obrazujuc- egosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontak- te” Zurn Fisic Chim, 26, 88-95 (1952).
    [2] Oberlin A, Endo M and Koyama T. “Filamentous growth of carbon through benzene decomposition” J. Cryst. Growth, 32, 335-349 (1976).
    [3] Iijima S. “Helical microtubles of graphite carbon” Nature, 354, 56-58 (1991).
    [4] Iijima S, Ichihashi T. “Single-shell carbon nanotubes of 1-nm diameter” Nature, 363, 603-605 (1993).
    [5] Bethune DS, Kiang CH, De Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R. “Cobalt caalysed growth of carbon nanotubes with single - atomic-layer walls” Nature, 363, 605-607 (1993).
    [6] M. S. Dresselhaus, G. Dresselhaus and R.Saito, “Physics of carbon nanotubes” Carbon, 33, 883-891 (1995).
    [7] H. Dai, “Carbon nanotubes:opportunities and challenges” Surf. Sci., 500, 218-241 (2002).
    [8] N. Hamada, S. Sawada and A. Oshiyama, “New one-dimensional conductors:graphitic microtubules” Phys. Rev. Lett., 68, 1579 (1992).
    [9] M-F Yu, O. Lourie, M. J. Dyer, K.Moloni, T.F. Kelly and R. S. Ruoff, “Strength and breakong mechanism of multiwalled carbon nanotubes under tensile load” Science, 287, 637-640 (2002).
    [10] http://ipn2.epfl.ch/CHBU/papers/ourpapers/Forro_NT99.pdf.
    [11] P. G. Collins and P. Avouris, “Nanotubes for electronic” Scientific American December, 69 (2000).
    [12] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomanek, J.E. Fischer, R.E. Smalley, “Crystalline ropes of metallic carbon nanotubes” Science, 273, 483-487 (1996).
    [13] P. G. Collins and P. Avouris, “Nanotubes for electronic” Scientific American December, 69 (2000).
    [14] R. Z. Ma, J. Wu, B. Q. Wei, J. Liang, D.H. Wu, “Processing and properties of carbon nanotubes-nano-SiC ceramic” J. Mater. Sci., 33, 5243-5246 (1998).
    [15] R.H. Baughman, C. Cui, A.A. Zakhidov, Z. lqbal, J.N. Barisci, G.M. Spinks, G.G. Wallace, A. Mazzoldi, D.D. Rossi, A.G. Rinzler, O. Jaschinski, S. Roth and M. Kertesz, “Carbon nanotube actuators” Science, 284, 1340-1344 (1999).
    [16] A. Bachtold, P. Hadley, T. Nakanishi and C. Dekker, “Logic circuits with nanotube transistors” Science, 294, 1317-1320 (2001).
    [17] P.G. Collins, A. Zettl, H. Bando, A. Thess and R.E. Smalley, “Nanotube nanodevice” Science, 278, 100-103 (1997).
    [18] Y. Chen, D.T. Shaw, X.D. Bai, E.G. Wang, C. Lund and W.M Lu, D. D. L. Chung, “Hydrogen storage in aligned carbon nanotubes” Appl. Phys. Lett., 78, 2128-2130 (2001).
    [19] J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho and H. Dai, “Nanotube molecular wires as chemical sensors” Science, 287, 622-625 (2000).
    [20] W.I. Milne, K.B.K. Teo, G.A.Amaratunga, P. Legagneux, L. Gangloff, J.P. Schnell, V. Semet, V. T. Binh and O. Grogning, “Carbon nanotubes as field emission sources” J. Mater. Chem., 14, 933-943 (2004).
    [21] C.V. Nguyen, Q.Ye and M. Meyyappan, “Carbon nanotube tips for scanning probe microscopy:fabrication and high aspect ratio nanometrology” Meas. Sci. Technol, 16, 2138-2146 (2005).
    [22] P. Kim and C.M.Lieber, “Nanotube nanotweezers” Science, 286, 2148-2150 (1999).
    [23] P. Avouris, J. Appenzeller, R. Martel and S.J. Wind, “Carbon nanotube electronics” Proc. IEEE, 91, 1772-1784 (2003).
    [24] E. Reyes, A.A. Krokhin and J. Roberts, “Effective dielectric constants of photonic crystal of aligned anisotropic cylinders and the optical response of a periodic array of carbon nanotubes” Phys. Rev. B, 72, 155118-1-4 (2006).
    [25] T. Gabay, Eyal Jakobs, E.Ben-Jacob and Y. Hanein, “Engineered self-organization of neural networks using carbon nanotube clusters” Physica A, 350, 611-621 (2005).
    [26] G.Hummer, J.C.Rasaiah, J.P. Noworyta, “Water conduction through the hydrophobic channel of carbon nanotube” Nature, 414, 188-190 (2001).
    [27] R. T. K. Baker, M. A. Barber, P. S. Harris, F. S. Feates and R. J. Waite, “Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene” J. Catal., 26, 51-62 (1972).
    [28] R. T. K. Baker, J. J. Chludzinski, N. S. Dudash and A. J. Simoens, “The formation of filamentous carbon from decomposition of acetylene over vanadium and molybdenum” Carbon, 21, 463-468 (1983).
    [29] A. Oberlin and M. Endo, “Filamentous growth of carbon through benzene decomposition” J. Cryst. Growth, 32, 335-349 (1976).
    [30] R. T. K. Baker, “Catalytic growth of carbon filaments” Carbon, 27, 315-323 (1989).
    [31] J. R. Nielsen and D. L. Trimm, “Mechanisms of carbon formation on nickel-containing catalysts” J. Catal., 48, 155-165 (1977).
    [32] A. C. Dupuis, “The catalyst in the CCVD of carbon nanotubes-a review” Prog. Mater. Sci., 50, 929-961 (2005).
    [33] J. I. Sohn, S. Lee, Y-H. Song, S-Y. Choi, K-I Cho and K-S. Nam, “Patterned selective growth of carbon nanotubes and large field emission from vertically well-aligned carbon nanotube field emitter arrays” Appl. Phys. Lett., 78, 901-903 (2001).
    [34] S. Fan, M. G. Chapline, N. R. Frankline, T. W. Tombler, A. M. Cassell and H. Dai, “Self-oriented regular arrays of carbon nanotubes and their field emission properties” Science, 283, 512-514 (1999).

    [35] J. Li, C. Papadopoulos, J. M. Xu, M. Moskovits, “High-order carbon nanotube arrays for electronics applications” Appl. Phys. Lett., 75 367-369 (1999).
    [36] T. Yanagishita, M. Sasaki, K. Nishio and H. Masuda, “Carbon nanotubes with a triangular cross-section, fabricated using anodic porois aliumina as the template” Adv. Mater., 16, 429-432 (2004).
    [37] C. Bower, W. Zhu, S. Jin and O. Zhou, “Plasma-induced alignment of carbon nanotubes” Appl. Phys. Lett., 77, 830-832 (2000).
    [38] T. de los Arcos, F. Vonau, M. G. Garnier, V. Thommen, H. G. Boyen, P. Oelhafen, M. Duggelin, D. mathis and R. Guggenheim, “Influence of iron-silicon interaction on the growth of carbon nanotubes produced by chemical vapor deposition” Appl. Phys. Lett., 80, 2383-2385 (2002).
    [39] K. Nishimura, N. Okazaki, L. Pan and Y. Nakayama, “In situ study of iron catalysts for carbon nanotube growth using x-ray diffraction analysis” Jpn. J. Appl. Phys.,43, L471-474 (2004).
    [40] T. de los Arcos, M. G. Garnier, J. W. Seo, P. Oelhafen, V. Thommen and D. Mathys, “The influence of catalyst chemical state and morphology on carbon nanotube growth” J. Phys. Chem. B, 108, 7728-7734 (2004).
    [41] N. M. Rodriguez, M. S. Kim, F. Fortin, I. Mochida and R.T.K. Baker, “Carbon deposition on iron-nickel alloy particles” Appl. Catal. A-Gen, 148, 265-282 (1997).
    [42] P. E. Anderson and N. M. Rodriguez, “Growth of graphite nanofibers from the decomposition of CO / H2 over silica-supported iron-nickel particles” J. Mater. Res., 14, 2912-2921 (1999).
    [43] A. K. M. Fazle Kibria, Y. H. Mo, K. S. Nahm and M. J. Kim, “Synthesis of narrow-diameter carbon nanotubes from acetylene decomposition over an iron-nickel catalyst supported on alumina” Carbon, 40, 1241-1247 (2002).
    [44] W. Qian, T. Liu, Z. Wang, H. Yu, Z. Li, F. Wei and G. Luo, “Effect of adding nickel to iron-alumina catalysts on the morphology of as-grown carbon nanotubes” Carbon, 41, 2487-2493 (2003).
    [45] T. Tsoufis, P. Xidas, L. jankovic, D. Gournis, A. Saranti, T. Bakas and M.A. Karakassides, “Catalytic production of carbon nanotubes over Fe-Ni bimetallic catalysts supported on MgO” Diam. Relat. Mater., 16, 155-160 (2007).
    [50] C. Singh, M. S.P. Shaffer and A. H. Windle,“Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapour deposition method” Carbon, 41, 359-368 (2005).
    [51] H. Cui, G. Eres, J.Y. Howe, A. Puretkzy, M. Varela, D.B. Geohegan, D. H. Lowndes, “Growth behavior of carbon nanotubes on multilayered metal catalyst film in chemical vapor deposition” Chem. Phys. Lett. 374, 222-228 (2003).
    [52] W. D. Zhang, Y. Wen, S. M. Liu, W. C. Tjiu, G. Q. Xu and L.M. Gan,“Synthesis of vertically aligned carbon nanotubes on metal deposition quartz plates” Carbon, 40, 1981-1989 (2002).
    [53] V.K. Kayastha, Y.K. Yap, Z. Pan, I.N. Ivanov, A.A. Puretzky and D.B. Geohegan,“High-density vertically aligned multiwalled carbon nanotubes with tubular structures” Appl. Phys. Lett., 86, 253105-1-3 (2005).
    [54] M.J. Bronikowski,“CVD growth of carbon nanotube bundle arrays” Carbon, 44, 2822-2832 (2006).
    [55] http://srdata.nist.gov/xps/;NIST XPS Database.
    [56] http://www.lasurface.com/xps/index.php/;Lasurface XPS Database.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE