簡易檢索 / 詳目顯示

研究生: 陳立穎
Li-Ying Chen
論文名稱: 史都華平台簡化動態模型分析
Simplified Dynamic Models of the Stewart Platform
指導教授: 彭明輝
Ming-Hwei Perng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 103
中文關鍵詞: 史都華平台動態模型Newton-EulerVirtual Work
外文關鍵詞: Stewart Platform, Dynamic, Newton-Euler, Virtual Work
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 並聯式六軸機器人最早由Stewart, D.於1965年所提出,也因此並聯式六軸機器人又稱為史都華平台(Stewart Platform),而史都華平台相較於傳統串聯式機器人有如下的優點:高精度、高剛性、低慣性。
    而對分析史都華平台動態模型而言,因為存在多連桿封閉迴路構型,所以其動態方程式非常的複雜。而最常使用來建立史都華平台動態模型的方法有下列幾種:Newton-Euler方法、Lagrangian方法、虛功原理(Principle of Virtual Work)方法等。

    但是,前述的三種推導方法其數值計算的複雜度,相對於傳統的串聯式機器人而言仍是過於複雜,對於real-time implementation的要求將會是很嚴重的問題。因此,在本篇論文的研究重點在於提出合理的簡化假設,並配合數值模擬分析,來簡化史都華平台的動態方程式,以期簡化過後的動態模型能達到誤差在合理的範圍內,且計算效率有顯著的提升。另外,在經過合理的評估後,本論文將主要針對目前學術界中所提出建立最為完整史都華平台動態模型的兩種方法:Newton-Euler方法和虛功原理方法來作分析與比較。


    第一章 簡介........................................... 1 1.1史都華平台之發展背景............................... 1 1.2文獻回顧........................................... 3 1.3論文研究目的與結構................................. 5 第二章 史都華平台動態模型............................. 7 2.1簡介............................................... 7 2.2 NEWTON-EULER METHOD............................... 7 2.2.1驅動桿速度與角速度............................... 8 2.2.2驅動桿加速度與角加速度........................... 9 2.2.3驅動桿動態方程式................................. 11 2.2.4可動板(end-effector)動態方程式................. 13 2.2.5驅動桿輸出力..................................... 14 2.2.6 Newton-Euler方法總整理.......................... 15 2.3 VIRTUAL WORK METHOD............................... 16 2.3.1位置分析......................................... 16 2.3.2速度分析......................................... 17 2.3.3加速度分析....................................... 18 2.3.4 Platform Jacobian矩陣與Link Jacobian矩陣........ 19 2.3.5可動板(end-effector)運動方程式................. 21 2.3.6 Virtual Work方法總整理.......................... 22 2.4簡化動態模型之初步探討............................. 23 2.4.1忽略上、下驅動桿動態方程式推導................... 24 Newton-Euler方法:.................................... 24 Virtual Work方法:.................................... 24 2.4.2數值模擬分析..................................... 24 2.5討論............................................... 31 第三章 簡化動態模型分析與模擬......................... 32 3.1簡介............................................... 32 3.2 簡化假設條件簡介.................................. 33 3.3簡化動態方程式推導與分析........................... 36 M1模型:簡化條件(a)................................. 36 Newton-Euler方法:.................................... 36 Virtual Work方法:.................................... 40 M2模型:簡化條件(a)+(b)........................... 49 Newton-Euler方法:.................................... 49 Virtual Work方法:.................................... 51 M3模型:簡化條件(a)+(b)+(c)..................... 55 Newton-Euler方法:.................................... 56 Virtual Work方法:.................................... 57 M4模型:簡化條件(a)+(b)+(c)+(d)............... 61 Newton-Euler方法:.................................... 62 Virtual Work方法:.................................... 63 M5模型:簡化條件(e)................................. 68 Newton-Euler方法:.................................... 68 Virtual Work方法:.................................... 70 3.4改變速度分析....................................... 75 3.5結果分析........................................... 79 第四章 結論........................................... 80 4.1結論............................................... 80 4.2未來研究方向....................................... 80 參考文獻.............................................. 82

    [1] Stewart, D., 1965, “A Platform with Six Degree of Freedom,” Proc. Institute of Mechanical Engineers, Vol. 108, No. 3884, pp. 371-386.
    [2] Raghavan, M., 1993, “Stewart platform of general geometry has 40 configurations,” Trans. ASME, J. Mechanical Design, Vol. 115, No. 2, pp. 277-280.
    [3] Geng, Z. and Haynes, L. S., 1993, “Six-degree-of-freedom active vibration isolation a Stewart platform mechanism,” J. Robotic System, Vol. 10, No. 5, pp. 725-744.
    [4] Bernelli-Zazzera, F. and Gallieni, D., 1995, “Analysis and design of hexapod mechanism for autonomous payload pointing,” 46th IFAC Congress, Oslo, 2-6 Oct. 1995, pp. 135-138.
    [5] Dunlop, G. R. and Jones, T. P., 1996, “Gravity counter balancing of a parallel robot for antenna aiming,” 6th ISRAM, Montpellier, 28-30 May 1996, pp. 153-158.
    [6] Luh, J. Y. S., Walker, M. W. and Paul, R. P., 1980, “Resolved-acceleration control of mechanical manipulators,” IEEE Trans. Automatic Control, AC-25, pp. 468-474.
    [7] An, C. H., Atkeson, C. G., Griffiths, J. D. and Hollerbach, J. M., 1987, “Experimental evaluation of feedforward and computer torque control,” Proc. IEEE Int. Conf. Robotics and Automation, Raleigh, NC, USA, pp. 185-198.
    [8] J.-J. Slotine and W. Li, 1991, Applied Nonlinear Control, Prentice Hall, Inc.
    [9] Merlet, J. P., 1987, "Parallel manipulators, Part 1:Theory," Technical report 646, INRIA.
    [10] Gosselin, C., 1990, "Determination of the workspace of 6-dof parallel manipulators," J. of Mech. Design, Vol. 112, No. 3, pp. 331-336.
    [11] Merlet, J. P., 1989, "Singular configurations of parallel manipulators and Grassmann geometry," Int. J. Robotics Research, Vol. 8, No.5, pp. 45-56.
    [12] Kenneth H. Pittens and Ron P. Podhorodeski, 1993, "A Family of Stewart Platform with Optimal Dexterity," J. Robotic Systems, Vol. 10, No. 4, pp. 463-479.
    [13] Fichter, E. F., 1986, “A Stewart platform-based manipulator: general theory and practical construction,” Int. J. Robotics Research, Vol. 5, No. 2, pp. 157-182.
    [14] Charles C. Nguyen, Sami S. Antrazi, and Zhen-Lei Zhou, 1993, "Adaptive Control of a Stewart Platform-Based Manipulator," J. Robotic Systems, Vol. 10, No. 5, pp. 657-687.
    [15] Nag-In Kim and Chong-Won Lee, 1998, "High Speed Tracking Control of Stewart Platform Manipulator via Enhanced Sliding Mode Control," Proc. of the IEEE Int. Conf. On Robotics and Automation, Leuven, Belgium, pp. 2716-2721.
    [16] Do, W. Q. D. and Yang, D. C. H., 1988, “Inverse dynamic analysis and simulation of a platform type of robot,” J. Robotic Systems, Vol. 5, No. 3, pp. 209-227.
    [17] Dasgupta, B. and Mruthyunjaya, T. S., 1998, “A Newton-Euler formulation for the inverse dynamics of the Stewart platform manipulator,” Mech. Mach. Theory, Vol. 33, No. 8, pp. 1135-1152.
    [18] Dasgupta, B. and Choudhury, P., 1999, “A general strategy based on the Newton-Euler approach for the dynamic formulation of parallel manipulators,” Mech. Mach. Theory, Vol. 34, No. 6, pp. 801-824.
    [19] Geng, Z., Haynes, L. S., Lee, J. D. and Carroll, R. L., 1992, “On the dynamic model and kinematic analysis of a class of Stewart platforms,” Robotics and Autonomous Systems, Vol. 9, No. 4, pp. 237-254.
    [20] Liu, K., Lewis, F., Lebret, G. and Taylor, D., 1993, “The singularities and dynamics of a Stewart platform manipulator,” J. Intelligent and Robotic Systems, Vol. 8, No. 3, pp. 287-308.
    [21] Lebret, G., Liu, K. and Lewis, F. L., 1993, “Dynamic analysis and control of a Stewart platform manipulator,” J. Robotic Systems, Vol. 10, No. 5, pp. 629-655.
    [22] Zhang, C. D. and Song, S. M., 1993, “An efficient method for inverse dynamics of manipulators based on the virtual work principle,” J. Robotic Systems, Vol. 10, No. 5, pp. 605-207.
    [23] Wang, J. and Gosselin, C. M., 1998, “A new approach for the dynamic analysis of parallel manipulators,” Multibody System Dynamics, Vol. 2, pp. 317-334.
    [24] Tsai, L. W., 2000, “Solving the Inverse dynamics of a Stewart-Gough manipulator by the principle of virtual work,” J. Mechanical Design, Vol. 122, No. 1, pp. 3-9.
    [25] Sugimoto, K., 1987, “Kinematic and dynamic analysis of parallel manipulators by means of motor algebra,” J. Mechanisms, Transmissions, and Automation in Design, Vol. 109, No. 1, pp. 3–7.
    [26] Sugimoto, K., 1989, “Computational scheme for dynamic analysis of parallel manipulators,” J. Mechanisms, Transmissions, and Automation in Design, Vol. 111, No. 1, pp. 29–33.
    [27] Liu, M. J., Li, C. X. and Li, C. N., 2000, “Dynamics analysis of Gough-Stewart platform manipulator,” IEEE Trans. on Robotics and Automation, Vol. 16, No. 1, pp. 94-98.
    [28] Tsai, L. W., 1999, Robot Analysis The Mechanics of Serial and Parallel Manipulators, John Wiley & Sons, Inc., New York, pp. 37-41.
    [29] 蔡永生, 2000, 史都華平台五軸機械性能分析與設計程序, 清華大學動力機械工程學系碩士論文.
    [30] Fu, K. S., Gonzalea, R. C. and Lee, C. S. G., 1987, Robotics: Control, Sensing. Vision and Intelligence, McGraw-Hill, New York, pp.132.
    [31] Ji, Z., 1993, “Study of the effect of leg inertia in Stewart platform,” Proc. of the IEEE Int. Conf. on Robotics and Automation, Vol. 1, pp. 121-126.
    [32] C. Reboulet and T. Berthomieu, 1991, "Dynamic models of a six degree of freedom parallel manipulator," Proc. ICAR'91, Pise, Italy, pp. 1153-1157.
    [33] C. C. Nguyen and F. J. Pooran, 1989, "Dynamic analysis of a 6 DOF CKCM robot end-effector of dual-arm telerobot systems," Robotics and Autonomous Systems, Vol. 5, No. 4, pp. 377-394.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE