簡易檢索 / 詳目顯示

研究生: 蔡雅卉
論文名稱: 藉由化學性蝕刻形成具截邊立方體和截角菱形十二面體結構的氧化亞銅奈米骨架;超小顆氧化亞銅立方體和八面體以及八足體的合成及其光催化活性的探討
Formation of Edge-Truncated Cubic and Truncated Rhombic Dodecahedral Cu2O Nanoframes via Chemical Etching; Synthesis and Photocatalytic Activity of Ultrasmall Cu2O Cubes, Octahedra and Octapods
指導教授: 黃暄益
Huang, Michael Hsuan-Yi
口試委員: 黃暄益
王素蘭
裘性天
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 101
中文關鍵詞: 氧化亞銅奈米半導體尺寸控制光催化
外文關鍵詞: cuprous oxide, nano, semiconductor, size control, photocatalysis
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一、 藉由化學性蝕刻形成具截邊立方體和截角菱形十二面體結構的氧化亞銅奈米骨架
    本文利用簡易的方式來形成截邊立方體和截角菱形十二面體兩種型態的氧化亞銅奈米骨架。於水相系統下加入含有氯化銅(CuCl2)、氫氧化鈉(NaOH)、界面活性劑十二烷基硫酸鈉(sodium dodecyl sulfate,SDS)、還原劑鹽酸羥胺(hydroxylamine,NH2OH•HCl)與鹽酸(HCl),即可合成出截邊立方體結構的氧化亞銅奈米骨架(edge-truncated cubic Cu2O nanoframes)。這是第一次合成出340–370奈米的氧化亞銅截邊立方體奈米骨架。經由在離心前加入的乙醇與溶液中的十二烷基硫酸鈉反應,進而瓦解覆蓋在粒子表面的界面活性劑分子,促進鹽酸選擇性蝕刻在氧化亞銅{110}晶面上而得到新穎的氧化亞銅奈米骨架結構。除此之外,我們利用預先合成的具{100}截面的菱形十二面體({100}-truncated rhombic dodecahedra)之氧化亞銅奈米粒子作為犧牲模板,在化學蝕刻反應前加入的氫氧化鈉扮演穩定晶面的角色。利用精準控制蝕刻劑為鹽酸的注射量,經由選擇性蝕刻在氧化亞銅{110}晶面上,即可形成具{100}截面的菱形十二面體結構的氧化亞銅奈米骨架({100}-truncated rhombic dodecahedral Cu2O nanoframes)。

    二、 超小顆氧化亞銅立方體和八面體以及八足體的合成及其光催化活性的探討
    本文利用簡易的方式來合成極小的氧化亞銅立方體到八面體的奈米晶體結構,其平均邊長為37奈米與67奈米。於水相系統中混合醋酸銅(Cu(OAc)2)與氫氧化鈉(NaOH),再經由改變還原劑聯胺(hydrazine,N2H4•H2O)加入的量即可得到不同形貌的氧化亞銅奈米晶體。反應中發現增加聯胺加入的量可以得到具有較高比例的{111}晶面氧化亞銅奈米結構。聯胺為一路易士鹼,推斷加入越多的聯胺會抑制{111}晶面的成長速率,而成長速率較低的晶面會被保留下來因此形成最後的八面體奈米晶體。八足體氧化亞銅奈米晶體的製備為加入氯化銅(CuCl2)、氫氧化鈉(NaOH)、界面活性劑十二烷基硫酸鈉(sodium dodecyl sulfate,SDS)與還原劑鹽酸羥胺
    (hydroxylamine,NH2OH•HCl),即可合成出平均大小為135奈米的八足體奈米結構。這是第一次合成出100奈米左右的八足體奈米晶體。
    經由對於帶負電甲基橙(methyl orange)做光降解實驗中發現小顆的八面體具有較好的催化活性,八足體和大顆的八面體次之,然而小顆的立方體無任何催化效果。這些結果證實了氧化亞銅的{111}和{100}面在催化活性上有顯著不同的效果以及奈米粒子的大小也會影響催化結果。


    CHAPTER 1
    Formation of Edge-Truncated Cubic and Truncated Rhombic Dodecahedral Cu2O Nanoframes via Chemical Etching

    We report two simple approaches for the formation of edge-truncated cubic and {100}-truncated rhombic dodecahedral cuprous oxide (Cu2O) nanoframes. We used one-pot solution route to synthesize edge-truncated cubic nanoframes. An aqueous solution containing CuCl2, sodium dodecyl sulfate (SDS) surfactant, NH2OH•HCl reductant, NaOH, and HCl were utilized, with the reagents introduced in the order listed. Crystal growth dominates the process in the first hour. Selective acidic etching on the {110} faces by HCl via the addition of ethanol followed by sonication of the solution led to the novel structure of edge-truncated cubic nanoframe with exclusively the etched {110} faces. This is the first time Cu2O edge-truncated cubic nanoframes have been fabricated with diameters of 340–370 nm and a wall thickness of 20–22 nm. To make Cu2O truncated rhombic dodecahedral nanoframes, Cu2O truncated rhombic dodecahedra were used as the sacrificial templates. Careful chemical etching of truncated rhombic dodecahedra was accomplished by injection of an acidic HCl solution to enable face-selective etching over the {110} faces. The resulting {100}-truncated rhombic dodecahedral Cu2O nanoframes with empty {110} faces have a wall thickness of 20–30 nm. The morphologies of these hollow nanoframes were carefully examined by electron microscopy.

    CHAPTER 2
    Synthesis and Photocatalytic Activity of Ultrasmall Cu2O Cubes, Octahedra and Octapods

    We have successfully utilized a feasible method to synthesize ultrasmall Cu2O cubic and octahedral nanocrystals with average edge lengths of 37 and 67 nm, respectively. The nanocrystals were prepared in an aqueous solution of copper acetate (Cu(OAc)2), NaOH and hydrazine (N2H4•H2O) reductant by simply varying the volume of hydrazine added to the reaction mixture. The amount of N2H4 added for cubes and octahedra may influence the truncation degree of Cu2O nanoparticles because N2H4 is a Lewis base. During the crystal growth, crystal faces with a higher growth speed would be eliminated and the crystal morphology was defined by the slowest growing crystal faces. By increasing the amount of N2H4 used, Cu2O octahedral nanocrystals with a higher fraction of {111} faces were produced.
    Octapod-shaped Cu2O nanocrystals have also been synthesized via mixing CuCl2, NaOH, sodium dodecyl sulfate (SDS) surfactant and hydroxylamine (NH2OH•HCl) reductant. This is the first time Cu2O octapod-shaped nanocrystals with average sizes of 135 nm are synthesized. TEM and HRTEM images confirmed that the octapods are mainly bounded by the {100} faces with perpendicular crossed depression over their six cubic faces. Optical characterization of these smaller Cu2O nanocrystals showed a weak scattering effect with a broad band centered at 377, 457, and 532 nm respectively for the cubes, octahedra, and octapods. In the photodegradation of negatively charged methyl orange, 70 nm octahedra showed better photocatalytic performance than 135 nm octapods and 460 nm octahedra. The cubes with only the {100} faces were not active. The results clearly demonstrate that the dramatic differences in the catalytic activities of the {100} and {111} faces of Cu2O nanocrystals and that smaller particle sizes with a significantly more surface area of {111} facets are indeed more efficient catalysts.

    TABLE OF CONTENTS ABSTRACT OF THE THESIS iii TABLE OF CONTENTS vii LIST OF FIGURES x LIST OF TABLES xvii LIST OF SCHEMES xvii CHAPTER 1 Formation of Edge-Truncated Cubic and Truncated Rhombic Dodecahedral Cu2O Nanoframes via Chemical Etching 1.1 Introduction 1 1.1.1 Motivation of the Present Thesis 4 1.1.2 Cuprous Oxide Hollow Spheres 6 1.1.3 Cuprous Oxide Hollow Structures with Specific Shapes 11 1.2 Experimental Section 15 1.2.1 Chemicals 15 1.2.2 Synthesis of Edge-Truncated Cubic Cu2O Nanoframes 15 1.2.3 Synthesis of All-Corner-Truncated Rhombic Dodecahedral and {100}-Truncated Rhombic Dodecahedral Cu2O Nanocrystals 16 1.2.4 Etching of Cu2O Nanocrystals in an Acidic Solution 17 1.2.5 Instrumentation 19 1.3 Results and Discussion 20 1.4 Conclusion 42 1.5 References 43 CHAPTER 2 Synthesis and Photocatalytic Activity of Ultrasmall Cu2O Cubes, Octahedra and Octapods 2.1 Introduction 48 2.1.1 Synthesis of Cu2O Octapods 51 2.1.2 Synthesis of Cu2O Nanocubes and Nanooctahedra 56 2.1.3 Synthesis of Cu2O Nanocrystals with Shape Evolution 60 2.1.4 Facet-Specific Properties of Cu2O Nanocrystals 64 2.1.6 Introduction to This Thesis Study 67 2.2 Experimental Section 69 2.2.1 Chemicals 69 2.2.2 Synthesis of Cubic and Octahedral Cu2O Nanocrystals 69 2.2.3 Synthesis of Octapod-shaped Cu2O Nanocrystals 70 2.2.4 Photocatalysis 71 2.2.5 Instrumentation 75 2.3 Results and Discussion 76 2.4 Conclusions 97 2.5 References 99

    Chapter 1

    (1) Yang, J.; Lee, J.; Kang, J.; Lee, K.; Suh, J.-S.; Yoon, H.-G. ; Huh, Y.-M.; Haam, S. Langmuir 2008, 24, 3417.
    (2) Wu, P.-C.; Wang, W.-S.; Huang, Y.-T.; Sheu, H.-S.; Lo, Y.-W.; Tsai, T.-L.; Shieh, D.-B.; Yeh, C.-S. Chem. Eur. J. 2007, 13, 3878.
    (3) Gao, J.; Liang, G.; Cheung, J. S.; Pan, Y.; Kuang, Y.; Zhao, F.; Zhang, B.; Zhang, X.-X.; Wu, E. X.; Xu, B. J. Am. Chem. Soc. 2008, 130, 11828.
    (4) Ma, H.; Cheng, F.-Y.; Chen, J.; Zhao, J.-Z.; Li, C.-S.; Tao, Z.-L.; Liang, J. Adv. Mater. 2007, 19, 4067.
    (5) Deng D.; Lee, J.-Y. Chem. Mater. 2008, 20, 1841.
    (6) Cao, A.-M.; Hu, J.-S.; Liang, H.-P.; Wan, L.-J. Angew. Chem., Int. Ed. 2005, 44, 4391.
    (7) Wang, Z.-Y.; Luan, D.-Y.; Boey, F. Y.-C.; Lou, X.-W. J. Am. Chem. Soc. 2011, 133, 4738.
    (8) Fei, J.-B.; Cui, Y.; Yan, X.-H.; Qi, W.; Yang, Y.; Wang, K.-W.; He, Q.; Li, J.-B. Adv. Mater. 2008, 20, 452.
    (9) Cao S.-W.; Zhu, Y.-J. J. Phys. Chem. C 2008, 112, 6253.
    (10) Lee, J.; Park, J.-C.; Song, H. Adv. Mater. 2008, 20, 1523.
    (11) Kim, S.-W.; Kim, M.; Lee, W.-Y.; Hyeon, T. J. Am. Chem. Soc. 2002, 124, 7642.
    (12) Kondo, Y.; Yoshikawa, H.; Awaga, K.; Murayama, M.; Mori, T.; Sunada, K.; Bandow, S.; Iijima, S. Langmuir 2008, 24, 547.
    (13) Koo, H.-J.; Kim, Y.-J.; Lee, Y.-H.; Lee, W.-I.; Kim, K.; Park, N.-G. Adv. Mater. 2008, 20, 195.
    (14) Li, H.-X.; Bian, Z.-F.; Zhu, J.; Zhang, D.-Q.; Li, G.-S.; Huo, Y.-N.; Li, H.; Lu, Y.-F. J. Am. Chem. Soc. 2007, 129, 8406.
    (15) Cao, X.-B.; Gu, L.; Zhuge, L.; Gao, W.-J.; Wang, W.-C.; Wu, S.-F. Adv. Funct. Mater. 2006, 16, 896.
    (16) Li, B.-X.; Xie, Y.; Jing, M.; Rong, G.-X.; Tang, Y.-C.; Zhang, G.-Z. Langmuir 2006, 22, 9380.
    (17) Zhang, H.-G.; Zhu, Q.-S.; Zhang, Y.; Wang, Y.; Zhao, L.; Yu, B. Adv. Funct. Mater. 2007, 17, 2766.
    (18) Henkes, A.E.; Vasquez, Y.; Schaak, R.E. J. Am. Chem. Soc. 2007, 129, 1896.
    (19) Liang, W.; Wang, X.; Zhuang, Y.; Xu, B.; Kuang, S.; Li, Y. J. Am. Chem. Soc. 2008, 130, 2736.
    (20) Zhou, S.; Varughese, B.; Eichhorn, B.; Jackson, G.; McIlwrath, K. Angew. Chem. Int. Ed. 2005, 44, 4539.
    (21) Wang, X.; Fu, H.; Peng, A.; Zhai, T.; Ma, Y.; Yuan, F.; Yao, J. Adv. Mater. 2009, 21, 1636.
    (22) Zeng, H.; Cai, W.; Liu, P.; Xu, X.; Zhou, H.; Klingshirn, C.; Kalt, H. ACS Nano 2008, 2, 1661.
    (23) Kuo, C.-H.; Huang, M.H. J. Am. Chem. Soc. 2008, 130, 12815.
    (24) X. Lu, J. Chen, S.E. Skrabalak, Y. Xia, Proc. ImechE. 2008, 221, 1.
    (25) Skrabalak, S.E.; Au, L.; Li, X.; Xia, Y. Nat. Protoc. 2007, 2, 2182.
    (26) Sun, Y.; Xia, Y. Adv. Mater. 2003, 15, 695.
    (27) Sun, X.-M.; Li, Y.-D. Angew. Chem. Int. Ed. 2004, 43, 3827.
    (28) Yang, M.; Ma, J.; Zhang, C.-L.; Yang, Z.-Z.; Lu, Y.-F. Angew. Chem. Int. Ed. 2005, 44, 6727.
    (29) Buchold, D.H.M.; Feldmann, C. Nano Lett. 2007, 7, 3489.
    (30) Xu, H.-L.; Wang, W.-Z. Angew. Chem. Int. Ed. 2007, 46, 1489.
    (31) An, K.; Hyeon, T. Nano Today 2009, 4, 359.
    (32) Liu, J.; F. Liu, K. Gao, J. Wu, D. Xue, J. Mater. Chem. 2009, 19, 6073.
    (33) Musa, A. O.; Akomolafe, T.; Carter, M. J. Sol. Energy Mater. Sol. Cells 1998, 51, 305.
    (34) Zhang, J.; Liu, J.; Peng, Q.; Wang, X.; Li, Y. Chem. Mater. 2006, 18, 867.
    (35) White, B.; Yin, M.; Hall, A.; Le, D.; Stolbov, S.; Rahman, T.; Turro, N.; O’Brien, S. Nano Lett. 2006, 6, 2095.
    (36) Yu,H.; Yu, J.; Liu, S.; Mann, S. Chem. Mater. 2007, 19, 4327.
    (37) Tang, B.-X.; Wang, F.; Li, J.-H.; Xie, Y.-X.; Zhang, M.-B. J. Org. Chem. 2007, 72, 6294.
    (38) Ng, C. H. B.; Fan, W. Y. J. Phys. Chem. B 2006, 110, 20801.
    (39) Kuo, C.-H.; Chen, C.-H.; Huang, M. H. Adv. Funct. Mater. 2007, 17, 3773.
    (40) Ho, J.-Y.; Huang, M. H. J. Phys. Chem. C 2009, 113, 14159.
    (41) Tan, Y.; Xue, X.; Peng, Q.; Zhao, H.; Wang, T.; Li, Y. Nano Lett. 2007, 7, 3723.
    (42) Xu, L.; Chen, X.; Wu, Y.; Chen, C.; Li, W.; Pan, W.; Wang, Y. Nanotechnology 2006, 17, 1501.
    (43) Gao, J. N.; Li, Q. S.; Zhao, H. B.; Li, L. S.; Liu, C. L.; Gong, Q. H.; Qi, L. M. Chem. Mater. 2008, 20, 6263.
    (44) Zhu, H. T.; Wang, J. X.; Xu, G. Y. Cryst. Growth Des. 2009, 9, 633.
    (45) Lu, C.; Qi, L.; Yang, J.; Wang, X.; Zhang, D.; Xie, J.; Ma, J. Adv. Mater. 2005, 17, 2562.
    (46) Teo, J. J.; Chang, Y.; Zeng, H. C. Langmuir 2006, 22, 7369.
    (47) Sui, Y.; Fu, W.; Zeng, Y.; Yang, H.; Zhang, Y.; Chen, H., Li, Y.; Li, M.; Zou, G. Angew. Chem. Int. Ed. 2010, 49, 4282.
    (48) Liu, R.; Kulp, E. A.; Oba, F.; Bohannan, E. W.; Ernst, F.; Switzer, J. A. Chem. Mater. 2005, 17, 725.
    (49) Kuo, C.-H.; Chu, Y.-T.; Song, Y.-F.; Huang, M. H. Adv. Funct. Mater. 2011, 21, 792–797.
    (50) Lyu, L.-M.; Huang, M. H. J. Phys. Chem. C 2011, 115, 17768–17773.
    (51) Huang, W.-C.; Lyu, L.-M.; Yang, Y.-C.; Huang, M. H. J. Am. Chem. Soc. 2012, 134, 1261.
    (52) Kuo, C.-H.; Huang, M. H. Nano Today 2010, 5, 106.

    Chapter 2

    (1) Rao, C. N. R.; Kulkarni, G. U.; Thomas, P. J.; Edwards, P. P. Chem. Soc. Rev. 2000, 29, 27.
    (2) Klabunde, J. K. (Editor) Nanoscale Materials in Chemistry, Wiley-Interscience, New York, 2001.
    (3) Ng, C. H. B.; Fan, W. Y. J. Phys. Chem. B 2006, 110, 20801.
    (4) Zhang, J.; Liu, J.; Peng, Q.; Wang, X.; Li, Y. Chem. Mater. 2006, 18, 867.
    (5) Xu, H.; Wang, W.; Zhu, W. J. Phys. Chem. B 2006, 110, 13829.
    (6) RAmirez-Qrtiz, J.; Ogura, T.; Medina-Vaaltierra, J.; Acosta-Qrtiz, S. E.; Bosch, P.; de los Reyes, J. A.; Lara, V. H. Appl. Surf. Sci. 2001, 174, 177.
    (7) White, B.; Yin, M.; Hall, A.; Le, D.; Stolbov, S.; Rahman, T.; Turro, N.; O’Brien, S. Nano Lett. 2006, 6, 2095.
    (8) Briskman, R. N. Sol. Energy Mater. Sol. Cells.1992, 27, 361.
    (9) Snoke, D. Science 2002, 298, 1368.
    (10) Hara, M.; Kondo, T.; Komoda, M.; Ikeda, S.; Shinohara, K.; Tanaka, A.; Kondo, J. N.; Domen, K. Chem. Commun. 1998, 357.
    (11) Tang, B.-X.; Wang, F.; Li, J.-H.; Xie, Y.-X.; Zhang, M.-B. J. Org. Chem. 2007, 72, 6294.
    (12) Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J.-M. Nature 2000, 407, 496.
    (13) Ho, J.-Y.; Huang, M. H. J. Phys. Chem. C 2009, 113, 14159.
    (14) Huang, W.-C.; Lyu, L.-M.; Yang, Y.-C.; Huang, M. H. J. Am. Chem. Soc. 2012, 134, 1261.
    (15) Ma, Y.-Y.; Jiang, Z.-Y.; Kuang, Q.; Zhang, S.-H.; Xie, Z.-X.; Huang, R.-B.; Zheng, L.-S. J. Phys. Chem. C 2008, 112, 13405.
    (16) Tan, Y.; Xue, X.; Peng, Q.; Zhao, H.; Wang, T.; Li, Y. Nano Lett. 2007, 7, 3723.
    (17) He, P.; Shen, X.; Gao, H. J. Colloid Interface Sci. 2005, 284, 510.
    (18) Kuo, C.-H.; Chen, C.-H.; Huang, M. H. Adv. Funct. Mater. 2007, 17, 3773.
    (19) Wang, Z.; Wang, H.; Wang, L.; Pan, L. Cryst. Res. Technol. 2009, 44, 624.
    (20) Gou, L.; Murphy, C. J. Nano Lett. 2003, 3, 231.
    (21) Yao, K.-X.; Yin, X.-M.; Wang, T.-H.; Zeng, H.-C. J. Am. Chem. Soc. 2010, 132, 6131.
    (22) Kuo, C.-H.; Huang, M. H. J. Am. Chem. Soc. 2008, 130, 12815.
    (23) Kuo, C.-H.; Huang, M. H. Nano Today 2010, 5, 106.
    (24) Wang, D.; Mo, M.; Yu, D.; Xu, L.; Li, F.; Qian, Y. Cryst. Growth Des. 2003, 3, 717.
    (25) Zhao, H.-Y.; Wang, Y.-F.; Zeng, J.-H. Cryst. Growth Des. 2008, 8, 3731.
    (26) Xu, Y.; Wang, H.; Yu, Y.; Tian, L.; Zhao, W.; Zhang, B. J. Phys. Chem. C 2011, 115, 15288.
    (27) Siegfried, M. J.; Choi, K.-S. Angew. Chem. Int. Ed. 2005, 44, 3218.
    (28) Chang, Y.; Zeng, H.-C. Cryst. Growth Des. 2004, 4, 273.
    (29) Kuo, C.-H.; Huang, M. H. J. Phys. Chem. C 2008, 112, 18355.
    (30) Kuo, C.-H.; Yang, Y.-C.; Gwo, S.; Huang, M. H. J. Am. Chem. Soc. 2011, 133, 1052.
    (31) Huang, M. H.; Lin, P.-H. Adv. Funct. Mater. 2012, 22,14.
    (32) Gou, L.; Murphy, C. J. J. Mater. Chem. 2004, 14, 735.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE