簡易檢索 / 詳目顯示

研究生: 許斐真
論文名稱: 個體偏好下對明確與模糊事件的風險容忍度分析
Risk Tolerance Analysis of Crisp and Fuzzy Events Based on Individual’s Preference
指導教授: 王小璠
Hsiao-Fan Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 55
中文關鍵詞: 風險管理偏好結構累積願景理論模糊集合理論
外文關鍵詞: Risk management, Preference structure, Cumulative Prospect Theory, Fuzzy Sets Theory
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文提出一個有系統的風險管理過程,其中包含風險分析與風險回應兩個部份。在風險分析的部份,利用累積願景理論(Cumulative Prospect Theory)描述個人的風險偏好,進而分析出風險事件帶給此人之風險程度(risk level),並依其影響大小,對應之風險區域即可確認。在風險回應的部份,每一風險區域有其對應之回應措施,包含接受(acceptance)、減輕(mitigation)、轉移(transfer)、避免(avoidance),利用提出的評估模式,考慮回應成本與回應風險後所產生的影響,以評估回應措施的適當與否,最後,選擇最適當的回應方法並執行之。
    此外,由於現實生活中存在著許多的不確定資訊,因此,考慮模糊的風險事件影響(outcomes),我們結合模糊理論(Fuzzy Sets Theory)的概念至風險管理中,以產生更精準的結果。
    運用此風險管理過程至A-C官司問題中,相對於傳統決策樹之期望值方法(EMV),我們提供決策者更完整且切身的資訊以做決策參考。


    In this study, we use Cumulative Prospect Theory to propose a risk management process including a risk analysis stage and a risk response stage. According to an individual’s preferential structure, individual’s risk level for the confronted risk can be identified from risk analysis. And based on a response evaluated model, the appropriate response strategy is assessed at the risk response stage. Based on the analyzed individual’s preference toward risk events, and the acquired level of severity for a risk event, the individual can be classified into dead, rational, sensitivity, or saturation of different risk zones. Then, the corresponding strategy, such as acceptance, mitigation, transfer, and avoidance can be decided. Finally, we apply the proposed evaluation model to validate the suggested strategy.
    When the outcome is uncertain we also proposed a fuzzy risk management process to deal with the imprecise information and achieve a more accurate result. The applicability of the proposed model is evaluated by the A-C court case with both crisp and fuzzy outcomes. The results have shown that the propose method is able to provide more useful and pertinent information than the traditional expected monetary value method.

    ABSTRACT I 中文摘要 II 謝誌 III CHAPTER 1 INTRODUCTION 1 CHAPTER 2 LITERATURE REVIEW 3 2.1 Risk Management 5 2.2 Personal Preference Structure 7 2.2.1 Utility Function and Risk Attitude 7 2.2.2 Prospect Theory (PT) 9 2.2.3 Cumulative Prospect Theory (CPT) 11 2.3 Fuzzy Sets for Risk Events 13 2.4 Clustering Method 14 2.5 Regression analysis 16 2.6 Summary 18 CHAPTER 3 RISK MANAGEMENT OF CRISP EVENTS 23 3.1 Risk Analysis 23 3.1.1 Individual’s Risk Levels and Risk Zones 23 3.1.2 Regression Model for the Possibility of Each Risk Zone 28 3.1.3 Regression Model for the Slope Interval of Each Risk Zone 31 3.2 Risk Response 35 3.2.1 Response Strategy 35 3.2.2 Response Evaluation Model 36 3.3 Summary 38 3.4 Illustrative Example 38 3.5 Discussion and Conclusion 42 CHAPTER 4 RISK MANAGEMENT FOR FUZZY EVENTS 44 4.1 Risk Management Process 44 4.2 Illustrative Example 47 4.3 Discussion and Conclusion 49 CHAPTER 5 CONCLUSION 51 REFERENCES 53

    1. 清華大學作業研究教材編寫組, 作業研究, 儒林圖書公司, 1992
    2. 張智星,MATLAB程式設計與應用,清蔚科技,2000
    3. 林大舜, “建構電子化政府資訊推動計畫的風險管理制度之研究—以某大學電子公文計畫推動為例”, 碩士論文, 元智大學工業工程與管理研究所, 2002
    4. 陳奕學, “空間資料叢集演算法之設計”, 碩士論文, 義守大學資訊工程研究所, 2002
    5. Bleichrodt H., J. L. Pinto, “A Parameter-Free Elicitation of the Probability Weighting Function in Medical Decision Analysis”, Management Science, Vol 46, No 11, pp. 1485-1496, 2000
    6. Bonvicini S. P. L., G. Spadoni, “Risk Analysis of Hazardous Materials Transportation: Evaluating Uncertainty by Means of Fuzzy Logic”, Journal of Hazardous Materials, Vol. 62, pp. 59-47, 1998
    7. Bordley R. F., “Reformulating Decision Theory Using Fuzzy Set Theory and Shafer’s Theory of Evidence”, Fuzzy Sets and Systems, Vol. 139, pp. 243-266, 2003
    8. Chateauneuf A., P. Wakker, “An Axiomatization of Cumulative Prospect Theory for Decision under Risk”, Journal of Risk and Uncertainty, Vol 18, No 2, pp.137-145, 1999
    9. Clemen R. T., T. Reilly, Making Hard Decisions with Decision Tools, Duxbury, Belmont California, 2001
    10. Fennema H., P. Wakker, “Original and Cumulative Prospect Theory: A Discussion of Empirical Differences”, Journal of Behavioral Decision Making, Vol 10, pp. 53-64, 1997
    11. Fishburn P. C., The Foundations of Expected Utility, Reidel, Dordrecht Holland, 1982
    12. Hillier F. S., G. J. Lieberman, Introduction to Operation Research, 7th Ed., McGraw-Hill, Dubuque Iowa, 2001
    13. Hillson D., “Developing Effective Risk Responses”, Proceedings of 30th Annual Project Management Institute 1999 Seminar & Symposium Philadelphia, Pennsylvania, USA, Papers Presented October 10 to 16, 1999
    14. Hojati M., C. R. Bector, K. Smimou, “A Simple Method for Computation of Fuzzy Linear Regression”, European Journal of Operational Research, Vol 166, pp.172-184, 2005
    15. Kahneman D., A. Tversky, “Prospect Theory: An Analysis of Decision under Risk”, Econometrica, Vol. 47, No 2, pp. 263-292, 1979
    16. Kaufman L., P. J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis, John Wily & Sons, New York, 1990
    17. Lee E. S., Q. Zhu, Fuzzy and Evidence Reasoning, Physica-Verlag, Heidelberg, 1995
    18. Lee H., H. Tanaka, “Upper and Lower Approximation Models in Interval Regression Using Regression Quantile Techniques”, European Journal of Operational Research, Vol. 116, pp. 653-666, 1999
    19. Montgomery D. C., E. A. Peck, Introduction to Linear Regression Analysis, Wiley, New York, 1982
    20. Montgomery D. C., Design and Analysis of Experiments, 5th Ed., Wiley, New York, 2001
    21. Neilson W., J. Stowe, “A Further Examination of Cumulative Prospect Theory Parameterizations”, The Journal of Risk and Uncertainty, Vol 24, No 1, pp. 31-46, 2002
    22. Ohashi T., M. Motomura, “Expert System of Cold Forging Defects Using Risk Analysis Tree Network with Fuzzy Language”, Journal of Materials Processing Technology, Vol. 107, pp. 260-266, 2000
    23. Piney C., “ Applying Utility Theory To Risk Management”, Project Management Journal, Vol 34, No 3, pp.26-31, 2003
    24. Prelec D., “The Probability Weighting Function”, Econometrica, Vol. 66, No 3, pp. 497-527, 1998
    25. Tanaka H., S. Uejima, K. Asai, “Linear Regression Analysis with Fuzzy Model”, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 12, pp. 903-907,1982
    26. Theoddoridis S., K. Koutriumbas, Pattern Recognition, 2nd Ed., Acadmic Press, San Diego, 2003
    27. Tummala V. M. Rao, Y. H. Leung, “A Risk Management Model to Assess Safety and Reliability Risks”, International Journal of Quality & Reliability Management, Vol 13, No 8, pp. 53-62, 1996
    28. Tummala V M R., J. F Burchett, “Applying a Risk Management Process (RMP) to Manage Cost Risk for an EHV Transmission Line Project”, International Journal of Project Management, Vol 17, No 4, pp. 223-235, 1999
    29. Tversky A., D. Kahneman, “Advanced in Prospect Theory: Cumulative Representation of Uncertainty”, Journal of Risk and Uncertainty, Vol 5, No.4, pp. 297-323, 1992
    30. Yaniv G., “Tax Compliance and Advance Tax Payments: A Prospect Theory Analysis”, National Tax Journal, Vol 52, No 4, pp.753-765, 1999
    31. Zadeh L. A., “Fuzzy Sets,” Information and Control, Vol 8, pp.338-353, 1965
    32. Wang H. F., Lecture Notes of Fuzzy Sets of Theory, http://140.114.54.175/~hfwang/, 2004

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE