簡易檢索 / 詳目顯示

研究生: 王晨宇
Wang, Chen-Yu
論文名稱: 5G 新空中介面之雙準循環低密度奇偶校驗編解碼器之設計
Double Quasi-Cyclic Low-Density Parity Check Codec Design for 5G New Radio
指導教授: 吳仁銘
Wu, Jen-Ming
口試委員: 翁詠祿
張錫嘉
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 45
中文關鍵詞: 錯誤更正碼混和式自動重傳第五代行動通訊新空中介面
外文關鍵詞: LDPC, HARQ, 5G, NEW RADIO
相關次數: 點閱:169下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本文中,我們提出了一種編碼器的“雙準循環低密度奇偶校驗碼”(Double Quasicyclic
    Low-Density Parity Check Code) 特殊結構。由於5G 具有伸縮性、低複雜度和低延
    遲的要求,我們提出雙準循環低密度奇偶校驗碼來實現這些需求。這種雙準循環低密度奇
    偶校驗矩陣具有雙移位循環的特點,所以編碼器不需要先求出反矩陣,可以直接用簡單的
    移位暫存器結構來實現。當使用這種特殊結構時,我們可以減少編碼準循環低密度奇偶校
    驗碼的複雜度。由於雙循環特性,雙準循環低密度奇偶校驗碼的編碼結構對硬體比較友
    善。此外,矩陣每行1 個數均為3 的性質有利於降低編解碼器的複雜度。根據這些概念,
    我們進行了許多的設計,如編碼器,解碼器,混合自動重複請求和5G 基本圖的修改,以
    滿足5G 規範。在吞吐量和延遲部分,我們達到低延遲和高吞吐量。在復雜度上,我們使
    用雙移位循環結構來降低編碼的複雜度。在誤塊率性能方面,我們和Mediatek、Ericsson
    等公司有相同的表現。在伸縮性方面,我們提出了從1/9 到1/3 的許多不同的碼率。在
    混合自動重複請求方面,我們設計了兩種不同的實施例,分別是藉由矩陣堆疊以及符合
    3GPP 架構的方式來實現。


    In,this thesis, we propose a special structure ”Double Quasi-Cyclic Low-Density Parity
    Check Code (DQC-LDPC)” for channel encoder and decoder. Since 5G has the requirement
    of flexibility, low complexity and low latency, we propose the DQC-LDPC Code to achieve
    these demands. This DQC-LDPC parity check matrix has characteristic of double shift
    circulant so that the encoder can be implemented by simple shift register structure instead
    of using matrix inverse. When using this special structure, we can reduce the complexity
    for encoding QC-LDPC codes. The encoding structure of DQC-LDPC is hardware friendly
    because of the double circulant property. Also, the degree-3 property benefits the codec with
    the lowest complexity. According to these concepts, we make lots of design such as encoder,
    decoder, Hybrid Automatic Repeat Request and modification of base graph for 5G to meet
    the 5G specifications. In the part of throughput and latency, we reach low latency and
    high throughput. In the complexity, we use the double shift circulant structure to reduce
    the complexity for encode. In the part of block error rate performance, we have the same
    performance with other company such as Mediatek and Ericsson. In terms of flexibility, we
    propose many different code rate from 1/9 to 1/3.

    1 Introduction 1 1.1 Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation and Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Proposed Method and Contribution . . . . . . . . . . . . . . . . . . . . . . . 4 1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Background 5 2.1 Low density parity check code . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Encoder of low density parity check code . . . . . . . . . . . . . . . . . . . . 6 2.3 Decoder of low density parity check code . . . . . . . . . . . . . . . . . . . . 8 2.4 Hybrid Automatic Repeat Request . . . . . . . . . . . . . . . . . . . . . . . 10 2.5 The requirement for channel code in 5G . . . . . . . . . . . . . . . . . . . . 12 3 Double Quasi-cyclic Low-Density Parity Check Code Construction 15 3.1 Double Quasi-cyclic Low-Density Parity Check Code . . . . . . . . . . . . . 15 3.2 Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3 Support of IR-HARQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3.1 General IR-HARQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3.2 New Radio IR-HARQ . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4 Simulation Results 29 4.1 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2 Discussion of Number of Retransmissions . . . . . . . . . . . . . . . . . . . 29 4.3 Throughput and Latency Comparison . . . . . . . . . . . . . . . . . . . . . . 34 4.4 Block Error Rate Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.4.1 eMBB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.4.2 URLLC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.4.3 IR-HARQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5 Conclusions 43

    [1] R. G. Gallager, “Low-density parity-check codes,” IRE Transactions on Information
    Theory, vol. 8, pp. 21–28, Jan 1962.
    [2] G.D.Forney, T.J.Richardson, and R.L.Urbande, “On the design of low-density paritycheck
    codes within 0.0045 db of the shannon limit,” IEEE Communications Letters,
    vol. 5, pp. 58–60, Feb 2001.
    [3] N.Bonello, C.S.Chen, and L.Hanzo, “Construction of regular quasi-cyclic protograph
    ldpc codes based on vandermonde matrices,” IEEE Trans. Vehicular Technology, vol. 57,
    pp. 2586–2588, Jul 2008.
    [4] Z.Li, L.Chen, L.Zeng, and S.Lin, “Efficient encoding of quasi-cyclic low-density paritycheck
    codes,” IEEE Trans. Commun, vol. 54, no. 1, pp. 71–81, 2006.
    [5] N.Kamiya, “High-rate quasi-cyclic low-density parity-check codes derived from finite
    affine planes,” IEEE Trans. Inform. Theory, vol. 53, pp. 1444–1459, Apr 2007.
    [6] E. Bahri, H.Baujemaa, and M.siala, “Performance comparision of type i type ii type iii
    hybrid arq schemes over awgn channels,” IEEE International Conference on Industrial
    Technology, Aug 2005.
    [7] T.J.Richardson and R.L.Urbanke, “Low-density parity-check codes,” IEEE Information
    Theory Society, vol. 47, pp. 638–656, Feb 2001.
    [8] F.R.Kschischang and B.J.Frey, “Iterative decoding of compound codes by probability
    propagation in graphical models,” IEEE Journal on Selected Areas in Communications,
    vol. 16, pp. 219–230, Feb 1998.
    [9] H.Zhong, W.Xu, N.Xie, and T.Zhang, “Area-efficient min-sum decoder design for highrate
    quasi-cyclic low-density parity-check codes in magnetic recording,” IEEE Transactions
    on Magnetics, vol. 43, pp. 4117–4122, Dec 2007.
    [10] R1-1701628, “Design Parameters and Implementation Aspects of LDPC Codes,” Ericsson,
    3GPP TSG-RAN WG1 88, Feb 2017.
    [11] R1-1700108, “LDPC code design,” Ericsson, 3GPP TSG-RAN WG1 NR, Jan 2017.
    [12] R1-1700976, “Discussion on LDPC code design,” Samsung, 3GPP TSG-RAN WG1 NR,
    Jan 2017.
    [13] R1-1700830, “LDPC rate compatible design,” Qualcomm Inc., 3GPP TSG-RAN WG1
    NR, Jan 2017.
    [14] R1-1701210, “High Performance LDPC code Features,” MediaTek, 3GPP TSG-RAN
    WG1 NR, Jan 2017.
    [15] R1-1701210, “High performance LDPC design features,” MediaTek, 3GPP TSG-RAN
    WG1 NR, Jan 2017.
    [16] R1-1608875, “LDPC Code Design for NR,” Ericsson, 3GPP TSG RAN WG1 86bis, Oct
    2016.
    [17] R1-1701035, “LDPC design for URLLC codes,” Nokia, Alcatel-Lucent Shanghai Bell,
    3GPP TSG-RAN WG1 NR, Jan 2017.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE