簡易檢索 / 詳目顯示

研究生: 蔡雯琪
Wen-Chi Tsai
論文名稱: 自我組裝金屬鉺矽化物奈米結構之研究
Self-Assembly of Erbium Silicide Nanostructures
指導教授: 陳力俊
Lih-Juann Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2006
畢業學年度: 95
語文別: 英文
論文頁數: 112
中文關鍵詞: 奈米線奈米結構鉺矽化物自我組裝
外文關鍵詞: nanowires, nanostructures, erbium silicide, self-assembly
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,奈米科技的研究及應用發展蓬勃,使得奈米尺度的材料受到廣大地注目,其中由於奈米線(nanowires)的應用可作為低電阻的導線或是極小型電子結構的奈米電極等方面而普遍地被學術及產業界研究。其中又以鉺金屬矽化物(erbium silicide)最具優勢故而受到矚目,本論文中利用掃描穿隧式顯微鏡(Scanning Tunneling Microscope, STM),穿透式電子顯微鏡(Transmission Electron Microscopy, TEM)及臨場穿透式電子顯微鏡(In Situ TEM)對自我組裝之鉺金屬矽化物其奈米結構在(001)矽基材上進行成分分析,並探討其形成之機制。


    Erbium silicides (ErSi2-x) nanowires (NWs) were grown on Si(001) at 700 °C. The orientation relationships between ErSi2-x and Si(001) were determined to be ErSi2-x [0001]// Si [1-10], ErSi2-x(1-100) // Si (001) and ErSi2-x [0001]// Si [-1-10], ErSi2-x (1-200)// Si (001).
    Owing to the anisotropy of lattice matches on Si(001), ErSi2-x has a preferred direction of growth along ErSi2-x[11-20]. Additional layers on tops of existing NWs have stacking faults, acting as sinks for incoming adatoms resulted in growing rapidly at the expense of laminated NWs. Si is expected to be the dominant diffusing species during intermixing, NWs were surrounded by silicon steps. Due to the shape and deposition rate, the vacancy ordering structure along c-axis is more order in NWs than in thin-film system. The analysis indicates that the variation of vacancy ordering structures depends on the growth conditions.
    A high density of ordered erbium atomic chain arrays has been grown uniformly on flat Si(001) surface at 500 °C. Site-specific adsorption of metallic erbium atomic-chain arrays were self-organized to grow single-row, double-row and triple-row Er atoms atomic chains with identical period in interspacing on (2×4) reconstructed surface. Single-row atomic chains on (2×4) surface reconstruction are seen to serve as nuclei for adsorbed Er atoms to adjust positions to grow Er silicide nanowires. The extremely high density of atomic Er chains promises to be applicable in altrasmall electronics devices.
    Stepped growth of erbium silicide nanowires on silicon at 700 °C by one Moiré fringe spacing at a time has been observed in situ in an ultrahigh vacuum transmission electron microscope (UHV-TEM). The transport of Er silicide in the side lane confined by Moiré fringes with a speed tens of the times of the nanowire growth rate was also directly observed. The results indicate that the strain between the Er silicide and silicon is periodic with Moiré fringe spacing as a period. In addition, the surface diffusion plays a major role in the nanowire growth.
    Two features of ErSi2 islands were formed in Si(001) substrate at 800 °C. One is the island in square shape with trapezoidal cross-sections. And the second feature is self-assembled endotaxial NWs. As more Er is added, the square islands increase in size isotropically. On the other hand, the high-aspect-ratio NW was formed by growth ledges along the interface to relieve the stress generated during the growth.

    Contents Ⅰ Acknowledgments Ⅳ Abstract Ⅵ List of Abbreviations and Acronyms Ⅸ Chapter 1 Introduction 1.1 An Overview of Nanotechnology 1 1.2 One-Dimensional (1D) Nanostructures 3 1.3 Self-Assembly 5 1.4 Review of Si(001)-2×1 Surface 6 1.5 Silicide Formation for Rare Earth/Si Systems 9 1.6 Scope and Aim of the Thesis 11 Chapter 2 Experimental Procedures 2.1 Introduction 13 2.2 Scanning Tunneling Microscopy (STM) 14 2.2.1 STM System 14 2.2.2 Tip Preparation 14 2.2.3 Evaporator System 15 2.2.4 Low Energy Electron Diffraction (LEED) 15 2.2.5 Sample Preparation 16 2.2.6 Deposition and Annealing 16 2.3 Transmission Electron Microscope (TEM) 17 2.3.1 Sample Preparation 17 2.3.2 Transmission Electron Microscope Examination 18 2.4 In situ transmission Electron Microscope (TEM) 19 2.4.1 Sample Preparation 19 2.4.2 In Situ Transmission Electron Microscope Observation 19 Chapter 3 Novel Laminated Nanowires of Erbium Silicide on Si(001) 3.1 Motivation 21 3.2 Experimental Procedures 22 3.3 Results and Discussion 23 3.4 Summary and Conclusions 28 Chapter 4 Spontaneous Growth of High-Density Ordered Erbium Atomic Chain Arrays on Flat Si(001) 4.1 Motivation 29 4.2 Experimental Procedures 30 4.3 Results and Discussion 31 4.4 Summary and Conclusions 35 Chapter 5 Stepped and High Speed Moiré Fringe Lane Growth of ErSi2-x Nanowires on Si(001) 5.1 Motivation 37 5.2 Experimental Procedures 39 5.3 Results and Discussion 39 5.4 Summary and Conclusions 43 Chapter 6 Self-Assembly Endotaxial ErSi2 Nanowires on Si(001) 6.1 Motivation 45 6.2 Experimental Procedures 46 6.3 Results and Discussion 47 6.4 Summary and Conclusions 50 Chapter 7 Summary and Conclusions 7.1. Novel Laminated Nanowires of Erbium Silicide on Si(001) 52 7.2. Spontaneous Growth of Ordered Erbium Atomic-Chain Arrays on Flat Si(001) 52 7.3. Stepped and High Speed Moiré Fringe Lane Growth of ErSi2-x Nanowires on Si(001) 53 7.4. Self-Assembly Endotaxial ErSi2 Nanowires on Si(001) 53 Chapter 8. Future Prospects 8.1. Dynamic Behavior of Er Atom on Si(001)-2×1 55 8.2. Fabrication of Devices and Analysis of Electrical Characterization 56 8.3. Self-Organized Growth of Nanostructure Arrays on Strain-Relief Patterns 57 8.4. Growth of Well-Aligned Nanostructures on Individual Er Particles in Self-Organized Er Particle Networks 57 References 58 Tables 77 Figure Captions 78 Figures 83 Publication List 117 Curriculum Vitae 120

    Chapter 1
    1.1 P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science 271, 933-937 (1996).
    1.2 C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal Assemblies,” Annu. Rev. Mater. Sci. 30, 545-610 (2000).
    1.3 J. M. Krans, J. M. van Rutenbeek, V. V. Fisun, I. K. Yanson, and L. J. deJongh, “The signature of conductance quantization in metallic point contacts,” Nature 375, 767-769 (1995).
    1.4 K. K. Likharev and T. Claeson, “Single electronics,” Sci. Am. 266, 80-85 (1992).
    1.5 G. Markovich, G. P. Collier, S. E. Henrichs, F. Remacle, R. D. Levine, and J. R. Heath, “Architectonic quantum dot solids,” Acc. Chem. Res. 32, 415-423 (1999).
    1.6 M. Narihiro, G. Yusa, Y. Nakamura, T. Noda, and H. Sakaki, “Resonant Tunneling of electrons via 20 nm scale InAs quantum dot and magnetotunneling spectroscopy of its electronic states,” Appl. Phys. Lett. 70, 105-107 (1996).
    1.7 J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, “Large on-off ratios and negative differential resistance in a molecular electronic device,” Science 286, 1550-1552 (1999).
    1.8 C. Papadopoulos, A. Rakitin, J. Li, A. S. Vedeneev, and J. M. Xu, “Electronic transport in Y-junction carbon nanotubes,” Phys. Rev. Lett. 85, 3476-3479 (2000).
    1.9 M. T. Björk, B. J. Ohlsson, C. Thelander, A. I. Persson, K. Deppert, L. R. Wallenberg, and L. Samuelson, “Nanowire resonant tunneling diodes,” Appl. Phys. Lett. 81, 4458-4460 (2002).
    1.10 J. D. Meindl, Q. Chen, and J. A. Davis, “Limits on silicon nanoelectronics for terascale integration,” Science 293, 2044-2049 (2001).
    1.11 C. M. Lieber, “The incredible shrinking circuit,” Sci. Am. 285, 58-65 (2001).
    1.12 V. Balzani, A. Credi, and M. Venturi, “The bottom-up approach to molecular-level devices and machines,” Chem. Eur. J. 8, 5524-5532 (2002).
    1.13 K. E. Drexler, “Engines of creation, the coming era of nanotechnology,” Anchor Press, New York, (1986).
    1.14 K. E. Drexler, “Machine-phase nanotechnology,” Sci. Am. 285, 74-75 (2001).
    1.15 C. Joachim, J. K. Gimzewski, and A. Aviram, “Electronics using hybrid-molecular and mono-molecular devices,” Nature 408, 541-548 (2000).
    1.16 C. P. Collier, G. Mattersteig, E. W. Wong, Y. Luo, K. Beverly, J. Sampaio, F. M. Raymo, J. F. Stoddart, and J. R. Heath, “A catenane-based solid state electronically reconfigurable switch,” Science 289, 1172-1175 (2000).
    1.17 M. A. Reed, J. Chen, A. M. Rawlett, D. W. Price, and J. M. Tour, “Molecular random access memory cell,” Appl. Phys. Lett. 78, 3735-3737 (2001).
    1.18 D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos, and P. L. McEuen, “A single-electron transistor made from a cadmium selenide nanocrystal,” Nature 389, 699-701 (1997).
    1.19 M. H. Devoret and R. J. Schoelkopf, “Amplifying quantum signals with the single-electron transistor,” Nature 406, 1039-1047 (2000).
    1.20 S. Iijima, “Helical microtube of graphitic carbon,” Nature 354, 56-58 (1991).
    1.21 C. Dekker, “Carbon nanotubes as molecular quantum wires,” Phys. Today 52, May, 22 (1999).
    1.22 Y. Zhang, K. Suenaga, C. Colliex, and S. Iijima, “Coaxial nanocable: silicon carbide and silicon oxide sheathed with boron nitride and carbon,” Science 281, 973-975 (1998).
    1.23 Y. Zhang, T. Ichihashi, E. Landree, F. Nihey, and S. Iijima, “Heterostructures of single-walled carbon nanotubes and carbide nanorods,” Science 285, 1719-1722 (1999).
    1.24 J. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes,” Acc. Chem. Res. 32, 435-445 (1999).
    1.25 Y. Cui and C. M. Lieber, “Functional nanoscale electronic devices assembled using silicon nanowire building blocks,” Science 291, 851-853 (2001).
    1.26 Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science 294, 1313-1317 (2001).
    1.27 W. Han, S. Fan, Q. Li, and Y. Hu, “Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction,” Science 277, 1287-1289 (1997).
    1.28 J. Hu, L. Li, W. Yang, L. Manna, L. Wang, and A. P. Alivisatos, “Linearly polarized emission from colloidal semiconductor quantum rods,” Science 292, 2060-2063 (2001).
    1.29 W. I. Park, G. C. Yi, M. Y. Kim, and S. J. Pennycook, “Quantum confinement observed in ZnO/ZnMgO nanorod heterostructures,” Adv. Mater. 15, 526-529 (2003).
    1.30 P. G. Collins and P. Avouris, “Nanotubes for electronics,” Sci. Am. 283, 62-69 (2000).
    1.31 M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415, 617-620 (2002).
    1.32 Y. Cui, X. Duan, J. Wang, and C. M. Lieber, “Doping and electrical transport in silicon nanowires,” J. Phys. Chem. B 104, 5213-5216 (2000).
    1.33 X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409, 66-69 (2001).
    1.34 M. S. Gudiksen, J. Wang, and C. M. Lieber, “Synthetic control of the diameter and length of single crystal semiconductor nanowires,” J. Phys. Chem. B 105, 4062-4064 (2001).
    1.35 X. Duan and C. M. Lieber, “General synthesis of compound semiconductor nanowires,” Adv. Mater. 12, 298-302 (2001).
    1.36 G. M. Whitesides and B. Grzybowski, “Self-assembly at all scales,” Science 295, 2418-2421 (2002).
    1.37 R. D. Meade and D. Vanderilt, “Adatom on Si(111) and Ge(111) surface,” Phys. Rev. B 40, 3905-3913 (1989).
    1.38 R. M. Tromp, R. J. Hamers, and J. E. Demuth, “Si(001) dimer structure observed with scanning tunneling microscopy,” Phys. Rev. Lett. 55, 1303-1306 (1985).
    1.39 D. J. Chadi, “Stabilities of single-layer and bilayer steps on Si(001) surface,” Phys. Rev. Lett. 59, 1691-1694 (1987).
    1.40 R. J. Hamers and U. K. Kohler, “Determination of the local electronic-structure of atomic-sized defects on Si(001) by tunneling spectroscopy,” J. Vac. Sci. Technol. A 7, 2854-2859 (1989).
    1.41 K. Hata, S. Ozawa, and H. Shigekawa, “Metastable and excited states of C defects of Si(001),” Surf. Sci. 441, 140-148 (1999).
    1.42 M. Chander, Y. Z. Li, J. C. Patrin, and J. H. Weaver, “Si(001)-(2×1) surface defects and dissociative and nondissocative adsorption of H2O studied with scanning tunneling microscopy,” Phys. Rev. B 48, 2493-2499 (1993).
    1.43 M. Nishizawa, T. Yasuda, S. Yamasaki, K. Miki, M. Shinohara, N. Kamakura, Y. Kimura, and M. Niwano, “Origin of type C defects on the Si(001)- (2×1) surface,” Phys. Rev. B 65, 161302 (2002).
    1.44 R. T. Tung, J. C. Bean, J. M. Gibson, J. M. Poate, and D. C. Jacobson, “Growth of single-crystal CoSi2 on Si(111),” Appl. Phys. Lett. 40, 684-686 (1982).
    1.45 R. T. Tung, J. M. Gibson, and J. M. Poate, “Growth of single-crystal epitaxial silicides on silicon by the use of template layers,” Appl. Phys. Lett. 42, 888-890 (1983).
    1.46 For a review, see R. T. Tung, J. M. Poate, J. C. Bean, J. M. Gibson, and D.C. Jacobson, “Epitaxial silicides,” Thin Solid Films 93, 77-80 (1982).
    1.47 L. J. Chen, H. C. Cheng, W. T. Lin, and M. S. Fung, “Epitaxial growth of refractory silicides on silicon,” Mater. Res. Soc. Symp. Proc. 37, 375-377 (1985).
    1.48 K. N. Tu, R. D. Thompson, and B. Y. Tsaur, “Low schottky-barrier height of rare-earth silicide on n-Si,” Appl. Phys. Lett. 38, 626-628 (1981).
    1.49 H. Norde, J. deSousa Pires, F. d’Heurle, F. Pesavento, S. Petersson, and P. A. Tove, “The schottky-barrier height of the contacts between some rare-earth metals (and silicides) and p-type silicon,” Appl. Phys. Lett. 38, 865-867 (1981).
    1.50 E. I. Gladyshersky, Crystal Chemistry of Silicides and Germanides (Metallurgya, 1971).
    1.51 E. Parthe, Collog. Intern. CNRS 157, 195 (1967).
    1.52 J. A. Knapp and S.T. Picraux, “Epitaxial growth of rare-earth silicides on (111)Si,” Appl. Phys. Lett. 48, 466-468 (1986).
    1.53 F. M. d’Heurle, N. G. Ainslie, A. Grangulee, and M. C. Shine, “Activation energy for electromigration failure in aluminun films containing Copper,” J. Vac. Sci Technol. 9, 289-293 (1972).
    1.54 F. A. d’Avitaya, A. Perio, J.-C. Oberlin, Y. Campidelli, and J. A. Chroboczek, “Fabrication and structure of epitaxial Er silicide films on (111)Si,” Appl. Phys. Lett. 54, 2198-2200 (1989).
    1.55 L. J. Chen and K. N. Tu, “Epitaxial growth of transition-metal silicides on silicon,” Mater. Sci. Rep. 6, 53-55 (1991).
    1.56 T. L. Lee, L. J. Chen, and F. R. Chen, “Evolution of vacancy ordering and defect structure in epitaxial YSi2-x thin films on (111)Si,” J. Appl. Phys. 71, 3307-3312 (1992).
    1.57 Z. He, M. Stevens, D. J. Smith, and P. A. Bennett, “Dysprosium silicide nanowires on Si(110),” Appl. Phys. Lett. 83, 5292-5294 (2003).
    1.58 C. Preinesberger, G. Pruskil, S. K. Becker, M. Dahne, D. V. Vyalikh, S. L. Molodtsov, C. Laubschat, and F. Schiller, “Structure and electronic properties of dysprosium-silicide nanowires on vicinal S(001),” Appl. Phys. Lett. 87, 083107 (2005).
    1.59 W. Zhou, Y. Zhu, T. Ji, X. Hou, and Q. Cai, “Formation and evolution of erbium silicide nanowires on vicinal and flat Si(001),” Nanotechnology 17, 852-858 (2006).
    1.60 J. Y. Duboz, P. A. Badoz, F. Arnaud, and J. A. Chroboczek, “Electronic transport-properties of epitaxial erbium silicide silicon heterostructures,” Appl. Phys. Lett. 55, 84-86 (1989).
    1.61 Y. K. Lee, N. Fujimura, T. Ito, and N. Itoh, “Epitaxial growth and structural characterization of erbium silicide formed on Si(001) through a solid-phase reaction,” J. Cryst. Growth 134, 247-254 (1993).
    1.62 A. Travlos, N. Salamourad, and E. Flouda, “Epitaxial erbium silicide films on Si(001): growth, structure and electrical properties,” Appl. Surf. Sci. 120, 355-364 (1997).

    Chapter 2
    2.1 G. Binning and H. Rohrer, “Scanning tunneling microscopy,” Helv. Phys. Acta 55, 726-735 (1982).
    2.2 T. T. Sheng and C. C. Chang, “Transmission electron microscopy of cross section of large scale integrated circuits,” IEEE Trans, Electron Devices Ed-32, 531-535 (1976).

    Chapter 3
    3.1 D. Appeli, “Nanotechnology: Wired for success,” Nature 419, 553-555 (2002).
    3.2 J. A. Zapien, Y. Jiang, X. M. Meng,W. Chen, F. C. K. Au, Y. Lifshitz, and S. T. Lee, “Room temperature single nanoribbon lasers,” Appl. Phys. Lett. 84, 1189-1191 (2004).
    3.3 Y. Cui and C. M. Lieber, “Functional nanoscale electronic devices assembled using silicon nanowire building blocks,” Science 291, 851-853 (2001).
    3.4 M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897-1899 (2001).
    3.5 Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides,” Science 291, 1947-1949 (2001).
    3.6 C. J. Murphy, “Nanocubes and nanoboxes,” Science 298, 2139-2141 (2002).
    3.7 Y. G. Sun and Y. N. Xia, “Shape controlled synthesis of gold and silver nanoparticles,” Science 298, 2176-2179 (2002).
    3.8 Z. He, M. Stevens, D. J. Smith, and P. A. Bennett, “Dysprosium silicide nanowires on Si(110),” Appl. Phys. Lett. 83, 5292-5294 (2003).
    3.9 C. Preinesberger, G. Pruskil, S. K. Becker, M. Dahne, D. V. Vyalikh, S. L. Molodtsov, C. Laubschat, and F. Schiller, “Structure and electronic properties of dysprosium-silicide nanowires on vicinal Si(001),” Appl. Phys. Lett. 87, 083107 (2005).
    3.10 W. Zhou, Y. Zhu, T. Ji, X. Hou, and Q. Cai, “Formation and evolution of erbium silicide nanowires on vicinal and flat Si(001),” Nanotechnology 17, 852-858 (2006).
    3.11 C. Preinesberger, S. K. Becker, S. Vandre, T. Kalka, and M. Dahne, “Structure of DySi2 nanowires on Si(001),” J. Appl. Phys. 91, 1695-1697 (2002).
    3.12 Y. Chen, D. A. A. Ohlberg, and R. S. Williams, “Nanowires of four epitaxial hexagonal silicides grown on Si(001),” J. Appl. Phys. 91,3213-3218 (2002).
    3.13 B. C. Harrison and J. J. Boland, “Real-time STM study of inter-nanowire reactions GdSi2 nanowires on Si(100),” Surf. Sci. 594, 93-98 (2005).
    3.14 J. Yang, Q. Cai, X. D. Wang, and R. Koch, “Morphological evolution of erbium disilicide nanowires on Si(001),” Surf. Interface Anal. 36, 104-108 (2004).
    3.15 B. Z. Liu and J. Nogami, “A scanning tunneling microscopy study of dysprosium silicide nanowire growth on Si(001),” J. Appl. Phys. 93, 593-599 (2003).
    3.16 J. E. Baglin, F. M. d’Heurle, and C. S. Petersson, “The formation of silicides from thin films of some rare-earth metals,” Appl. Phys. Lett, 36, 594-596 (1980).
    3.17 C. H. Luo, G. H. Shen, and L. J. Chen, “Vacancy ordering structures in epitaxial RESi2-x thin films on (111)Si and (001)Si,” Appl. Sur. Sci 113/114, 457-461 (1997).
    3.18 Z. R. Dai, Z. W. Pan, and Z. L. Wang, “Novel nanostructures of functional oxides synthesized by thermal evaporation,” Adv. Funct. Mater 13, 9-24 (2003).
    3.19 J. E. E. Baglin, F. M. d’Heurle, and C. S. Petersson, “The formation of silicides from thin films of some rare-earth metals,” Appl. Phys. Lett, 36, 594-596 (1980).
    3.20 Z. R. Dai, Z. W. Pan, and Z. L. Wang, “Ultra-long single crystalline nanoribbon of tin oxide,” Solid State Commun. 118, 351-354 (2001).

    Chapter 4
    4.1 C. Preinesberger, G.Pruskil, S. K.Becker, M. Dahne, D. V. Vyalikh, S. L. Molodtsov, C. Laubschat, and F. Schiller, “Structure and electronic properties of dysprosium-silicide nanowires on vicinal Si(001), ” Appl. Phys. Lett. 87, 083107 (2005).
    4.2 J. P. You, J. H. Choi, S. Kim, X. Li, R. S. Williams, and R. Ragan, “Regular Arrays of Monodisperse Platinum/Erbium Disilicide Core-Shell Nanowires and Nanoparticles on Si(001) via a Self-Assembled Template,” Nano Lett. (in press).
    4.3 G. Ye, M. A. Crimp, and J. Nogami, “Crystallographic study of self-assembled dysprosium silicide nanostructures on Si(001),” Phys. Rev. B 74, 033104 (2006).
    4.4 O. Kubo, Y. Shingaya, M. Aono, and Y. Nakayama, “One-dimensional Schottky contact between ErSi2 nanowire and Si(001),” Appl. Phys. Lett. 88, 233117 (2006).
    4.5 K. S. Chi, W. C. Tsai and L. J. Chen, “Evolution of vacancy ordering structures in epitaxial YbSi2-x thin films on (111) and (001)Si,” J Appl. Phys.93, 153 (2003).
    4.6 R. Ragan, Y. Chen, D. A. A, Ohlberg, G. M. Ribeiro, and R. S. Williams, “Ordered arrays of rare-earth silicide nanowires on Si(001),” J. Cryst. Growth 251, 657-661 (2003).
    4.7 D. Lee, D. K. Lim, S. S. Bae, S. Kim, R. Ragan, D. A. A. Ohlberg, Y. Chen, and R. S. Williams, “Unidirectional hexagonal rare-earth disilicide nanowires on vicinal Si(100)-2×1,” Appl. Phys. A 80, 1311-1313 (2005).
    4.8 B. Z. Liu and J. Nogami, “Growth of parallel rare-earth silicide nanowire arrays on vicinal Si(001),” Nanotechnology 14, 873-877 (2003).
    4.9 Z. He, M. Stevens, D. J. Smith, and P. A. Bennett, “Dysprosium silicide nanowires on Si(110),” Appl. Phys. Lett. 83, 5292-5294 (2003).
    4.10 J. R. Ahn, H. W. Yeom, H. S. Yoon, and I. W. Lyo, “Metal-insulator transition in Au atomic chains on Si with two proximal bands,” Phys. Rev. Lett. 91, 196403 (2003).
    4.11 J. N. Crain, A. Kirakosian, K. N. Altmann, C. Bromberger, S. C. Erwin, J. L. Mchesney, J. L. Lin, and F. J. Himpsel, “Fractional band filling in an atomic chain structure,” Phys. Rev. Lett. 90, 176805 (2003).
    4.12 J. Y. Cheng, F. Zhang, V. P. Chuang, A. M. Mayes and C. A. Ross, “Self-assembled one-dimensional nanostructure arrays,” Nano Lett. 6(9), 2099 (2006).
    4.13 P. Gambarsella, A. Dallmeyer, K. Maiti, M. C. Malagoli, W. Eberhardt, K. Kern, and C. Carbone, “Ferromagnetism in one-dimensional monatomicmetal chains,” Nature 416, 301-304 (2002).
    4.14 C. Tegenkamp, Z. Kallassy, H. Pfnur, H. L. Gunter, V. Zielasek, and M. Henzler, “ Switching between one and two dimensions: conductivity of Pb-induced chain structures on Si(557),” Phys. Rev. Lett. 95, 176804 (2005).
    4.15 S. J. Park, H. W. Yeom, J. R. Ahn, and I. W. Lyo, “Atomic-scale phase coexistence and fluctuation at the quasi-one-dimensional metal-insulator transition,” Phys. Rev. Lett. 95, 126102 (2005).
    4.16 A. Travlos, N. Salamouras and E. Flouda, “Epitaxial erbium silicide films on (100) silicon: growth, structure and electrical properties,” Appl. Surf. Sci. 120, 355 (1997).
    4.17 W. C. Tsai, H. C. Hsu, H. F. Hsu and L. J. Chen, “Vacancy ordering in self-assembled erbium silicide nanowires on atomically clean Si(0 0 1),” Appl. Surf. Sci. 244, 115 (2005).
    4.18 Y. Chen, D. A. A. Ohlberg and R. S. Williams, Mater. Sci. and Eng. B 87, 222 (2001).
    4.19 J. Yang, Q. Cai, X. D. Wang, and R. Koch, “Initial stages of erbium disilicide formation on Si(001),” Surf. Sci. 526, 291-296 (2003).
    4.20 B. Z. Liu and J. Nogami, “An STM study of the Si(001)(2×4)-Dy surface,” Surf. Sci. 488, 399-405 (2001).
    4.21 Y. Chen, D. A. A. Ohlberg, G. M. Ribeiro, Y. A. Chang and R. S. Williams, “Self-assembled growth of epitaxial erbium disilicide nanowires on silicon (001),” Appl. Phys. Lett. 76, 4004 (2000).
    4.22 Z. Li, S. Long, C. Wang, M. Liu, W. Wu, Y. Hao, and X. Zhao, “Resistivity measurements of self-assembled epitaxially grown erbium silicide nanowires,” J. Phys. D: Appl. Phys. 39, 2839-2842 (2006).
    4.23 O. Kubo, Y. Shingaya, M. Nakaya, M. Aono, and Y. Nakayama, “Epitaxially grown WOx nanorod probes for sub-100 nmmultiple-scanning-probe measurement,” Appl. Phys. Lett. 88, 254101 (2006).

    Chapter 5
    5.1 D. Appeli, “Wired for success,” Nature 419, 553-555 (2002).
    5.2 J. A. Zapien, Y. Jiang, X. M. Meng,W. Chen, F. C. K. Au, Y. Lifshitz, and S. T. Lee, “Room-temperature single nanoribbon lasers,” Appl. Phys. Lett. 84, 1189-1191 (2004).
    5.3 Z. He, M. Stevens, D. J. Smith and P. A. Bennett, “Epitaxial titanium silicide islands and nanowires,” Surf. Sci. 524, 148-156 (2003).
    5.4 T. R. Ramachandran, A. Madhukar, I. Mukhametzhanov, R. Heitz, A. Kalburge, Q. Xie and P. Chen, “Nature of Stranski–Krastanow growth of InAs on GaAs(001),” J. Vac. Sci. Technol. B 16 1330-1333 (1998).
    5.5 J. L. McChesney, A. Kirakosian, R. Bennewitz, J. N. Crain, J. L. Lin and F. J. Himpsel, “Gd disilicide nanowires attached to Si(111) steps,” Nanotechnology 13, 545-547 (2002).
    5.6 K. N. Tu, R. D. Thompson, and B. Y. Tsaur, Appl. Phys. Lett. 38, 626-628 (1981).
    5.7 H. Norde, J. deSousa Pires, F. d’Heurle, F. Pesavento, S. Petersson, and P. A. Tove, “The Schottky barrier height of the contacts between some rare-earth metals (and silicides) and p-type silicon,” Appl. Phys. Lett. 38, 865-866 (1981).
    5.8 P. L. Janega, J. McCaffrey, and D. Landheer, “Extremely low resistivity erbium ohmic contacts to n-type silicon,” Appl. Phys. Lett. 55, 1415-1417 (1989).
    5.9 C. Preinesberger, S. K. Becker, S. Vandre, T. Kalka, and M. Dahne, “Structure of DySi2 nanowires on Si(001),” J. Appl. Phys. 91, 1695-1697 (2002).
    5.10 Y. Chen, D. A. A. Ohlberg, and R. S. Williams, “Nanowires of four epitaxial hexagonal silicides grown on Si(001),” J. Appl. Phys. 91, 3213-3218 (2002).
    5.11 J. Nogami, B. Z. Liu, M. V. Katkov, C. Ohbuchi, and N. O. Birge, “Self-assembled rare-earth silicide nanowires on Si(001),” Phys. Rev. B 63, 233305 (2001).
    5.12 Y. Chen, D. A. A. Ohlberg, and R. S. Williams, “Epitaxial growth of erbium silicide nanowires on silicon(001),” Materials Science and Engineering B 87 222-226 (2001).
    5.13 A. Travlos, N. Salamouras, and E. Flouda, “Epitaxial erbium silicide films on (001) silicon: growth, structure and electronic properties,” Appl. Surf. Sci. 120, 355-364 (1997).
    5.14 W. C. Tsai, H. C. Hsu, H. F. Hsu and L. J. Chen, “Vacancy ordering in self-assembled erbium silicide nanowires on atomically clean Si(0 0 1),” Appl. Surf. Sci. 244, 115-119 (2005).
    5.15 J. H. Cho, Q. Niu, and Z. Zhang, “Oscillatory Nonmetal-Metal Transitions of Ultrathin Sb Overlayers on a GaAs(110) Substrate,” Phys. Rev. Lett. 80, 3582-3585 (1998).
    5.16 M. H. Pan, H. Liu, J .Z. Wang, J. F. Jia, Q. K. Xue, J. L. Li, S. Qin, U. M. Mirsaidov, X. R. Wang, J. T. Markert, Z. Zhang and C. K. Shih, “Quantum Growth of Magnetic Nanoplatelets of Co on Si with High Blocking Temperature,” Nano Lett. 5, 87-90 (2004).
    5.17 S. Kaise, M. Jakob, J. Zweck, W. Gebhardt, O. Ambacher, R. Dimitrov, A. T. Schremer, J. A. Smart and J. R. Shealy, “Structural properties of AlGaN’GaN heterostructures on Si(111) substrates suitable for high-electron mobility transistors,” J. Vac. Sci Technol. B 18, 733-740 (2000).
    5.18 J. Tersoff and R. M. Tromp, “Shape transition in growth of strained islands: spontaneous formation of quantum wires,” Phys. Rev. Lett. 70, 2782-2785 (1993).
    5.19 D. E. Jesson, G. Chen, K. M. Chen, and S. J. Pennycook, “Self-limiting of strained faceted islands,” Phys. Rev. Lett. 80, 5156-5159 (1998).
    5.20 C. Brechignac, Ph. Cahuzac, F. Carlier, C. Colliex, M. de Frutos, N. Kebaili, J. Le Roux, A. Masson, and B. Yoon, “Thermal and chemical nanofractal relaxation,” Eur. Phys. J. D 24, 265-268 (2003).
    5.21 Ellen D. Williams, “Nanoscale structures: lability, length scale, and fluctuations,” MRS Bulletin, 621-629 (2004).

    Chapter 6
    6.1 F. M. Ross, J. Tersoff, and R. M. Tromp, “Coarsening of self-assembled Ge quantum dots on Si(001),” Phys. Rev. Lett. 80, 984-987 (1998).
    6.2 J. Drucker, “Coherent islands and microstructural evolution,” Phys. Rev. B 48, 18203-18206 (1993).
    6.3 J. Tersoff and R. M. Tromp, “Shape transition in growth of strained islands: spontaneous formation of quantum wires,” Phys. Rev. Lett. 70, 2782-2785 (1993).
    6.4 A. Travlos, N. Salamouras, and E. Flouda, “Epitaxial erbium silicide films on (001) silicon: growth, structure and electronic properties,” Appl. Surf. Sci. 120, 355-364 (1997).
    6.5 N. Frangis, J. Van Landuyt, G. Kaltsas, A. Travlos, and A. G. Nassiopoulos, “Growth of erbium-silicide films on (100) silicon as characterized by electron microscopy and diffraction,” J. Crystal Growth 172, 175-182 (1997).
    6.6 A. Pradhan, N. Y. Ma, and F. Liu, “Theory of equilibrium shape of an anisotropically strained island: Thermodynamic limits for growth of nanowires,” Phys. Rev. B 70, 193405 (2004).
    6.7 A. Li, F. Liu, and M. G. Lagally, “Equilibrium shape of two-dimensional islands under stress,” Phys. Rev. Lett. 85, 1922-1925 (2000).
    6.8 Z. He, D. J. Smith, and P. A. Bennett, “Endotaxial silicides nanowires,” Phys. Rev. Lett. 93, 256102 (2004).
    6.9 C. Preinesberger, S. Vandre, T. Kalka, and M. Dahne-Prietsch, “Formation of dysprosium silicide wires on Si(001),” J. Phys. D 31, L43-45 (1998).
    6.10 Y. Chen, D. A. A. Ohlberg, G. Medeiros-Ribeiro, and Y. A. Chang, “Self-assembled growth of epitaxial erbium disilicide nanowires on silicon (001),” Appl. Phys. Lett. 76, 4004-4006 (2000).
    6.11 J. Nogami, B. Z. Liu, M. V. Katkov, C. Ohbuchi, and N. O. Birge, “Self-Assembled rare earth silicide nanowires on Si(001),” Phys. Rev. B 63, 233305 (2001).
    6.12 Y. Chen, D. A. A. Ohlberg, and R. S. Williams, “Nanowires of four epitaxial hexagonal silicides on Si(001),” J. Appl. Phys. 91, 3213-3218 (2002).

    Chapter 8
    8.1 I. S. Hwang and J. Golovchenko, “Observation of metastable structural excitation and concerted atomic motions and a crystal surface,” Science 258, 1119-1122 (1992).
    8.2 D. D. Chambliss, R. J. Wilson, and S. Chiang, “Nucleation of ordered Ni island arrays on Au(111) by surface-lattice dislocations,” Phys. Rev. Lett. 66, 1721-1724 (1991).
    8.3 S. Y. Shiryaev, F. Jensen, J. L. Hansen, J. W. Petersen, and A. N. Larsen, “Nanoscale structuring by misfit dislocations in Si1-xGex/Si epitaxial systems,” Phys. Rev. Lett. 78, 503-506 (1997).
    8.4 H. Brune, M. Giovannini, K. Bromann, and K. Kern, “Self-organized growth of nanostructure arrays on strain-relief patterns,” Nature 394, 451-453 (1998).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE