簡易檢索 / 詳目顯示

研究生: 陳彥博
Chen, Yen-Po
論文名稱: 使用網印及化學蝕刻法製作選擇性射極太陽能電池
Fabrication of Selective Emitter Type Single-Crystalline Silicon Solar Cells by Using Screen Printing and Chemical Etching Method
指導教授: 王立康
Wang, Li-Karn
口試委員: 張正陽
Chang, Jenq -Yang
何文章
Ho, Wen-Jeng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 59
中文關鍵詞: 太陽能電池
外文關鍵詞: Solar cell
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分為兩部分;首先以化學蝕刻法達到一次擴散製作選擇性射極結構,比較選擇性與否對短路電流和效率的差異。在製作選擇性射極結構使用的等向性蝕刻液混和了氫氟酸、硝酸、醋酸,比例為1:40:200的稀釋溶液。溶液中放入磁石旋轉使溶液混合均勻,避免影響部分區域蝕刻速率,由於蝕刻時間較長、蝕刻速率須精準控制,加入了大量的醋酸緩衝。
    磷摻雜的濃度、深度與持溫溫度、持溫時間相關,摻雜的磷原子濃度從基板表面向內遞減,在刮除表面磷摻雜層時以四點探針量測阻值變化推斷蝕刻量,再利用蝕刻時間調整最佳選擇性射極所需的照光區磷摻雜濃度,使用二次離子質譜儀驗證蝕刻前後的表面濃度差。利用可見-紫外光光譜儀和掃描式電子顯微鏡作量測,比較實驗中蝕刻時間對金字塔結構及反射率的關係。實驗結果顯示,以本研究的蝕刻溶液比例做重摻雜層刮除,蝕刻四分鐘內反射率與參考片相比無明顯變化;蝕刻一分五十秒可有效將表面高濃度磷摻雜層刮除,形成選擇性射極的結構。
    第二,沉積氫化非晶矽薄膜五奈米於單晶矽基板背表面,進行鈍化表面懸浮鍵的作用。利用拉曼光譜儀檢測燒結前後晶體結構的變化,再以傅立葉紅外光光譜儀和QSSPC量測模擬電極燒結前後矽氫鍵含量和少數載子生命期,以此判斷氫化非晶矽薄膜在高溫短時間製程後的鈍化效果。本研究之非晶矽層,於800℃持溫二十秒的高溫模擬後,晶體結構仍為非晶,但是在經過800℃持溫二十秒的模擬燒結後矽氫鍵含量明顯減少,而少數載子存活周期也下降,使得鈍化效果略微降低,在開路電壓方面的提升稍受影響。


    第一章 序論 1 1.1太陽能電池的發展 1 1.2文獻回顧 5 1.3 研究目的 6 1.4 論文概要 7 第二章 研究理論 8 2.1半導體物理 8 2.1-1材料與結構分類 8 2.1-2半導體能態 8 2.1-3摻雜與PN接面 11 2.1-4異質接面 13 2.1-5載子產生與複合 14 2.2太陽能電池原理 15 2.2-1太陽光譜 15 2.2-2太陽能電池工作原理 17 2.3太陽能電池等效電路 18 2.3-1理想太陽能電池等效電路 18 2.3-2太陽能電池等效電路 19 2.4太陽能電池特性參數 20 2.5太陽能電池效率損失 22 2.5-1光學損失 22 2.5-2電性損失 23 2.6太陽能電池效率改善 25 第三章 研究方法與製程步驟 28 3.1選擇性射極結構(SELECTIVE EMITTER) 28 3.1-1電極區之平坦化 28 3.1-2照光區之重摻雜刮除 28 3.2氫化非晶矽薄膜(HYDROGENATED AMORPHOUS SILICON) 29 3.3製程步驟 31 第四章 數據分析與討論 37 4.1選擇性射極結構數據分析 37 4.1-1表面形貌分析 37 4.1-2磷擴散分析 40 4.1-3電性分析 43 4.2氫化非晶矽薄膜數據分析 47 4.2-1晶體結構分析 47 4.2-2電性分析 48 第五章 結論 53 參考文獻 54

    [1] http://en.wikipedia.org/wiki/A._E._Becquerel
    [2] http://en.wikipedia.org/wiki/Charles_Fritts
    [3] D.M. Chapin, C.S. Fuller, and G.L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power,” J.Appl. Phys., Vol. 25, p. 676-677, (1954).
    [4] J. Zhao, A. Wang, M. A. Green, “High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates,” Solar Energy Materials and Solar Cells, Vol. 65, p.429-435, (2001).
    [5] William Sockley, and Hans J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J.Appl. Phys., Vol. 32, No. 3, p. 510-519, (1961).
    [6] Alexander Slade, and Vahan Garboushian, “27.6% efficient silicon concentrator solar cells for mass production,” Technical Digest, 15th International Photovoltaic Science and Engineering Conference, Shanghai, (2005).
    [7] http://en.wikipedia.org/wiki/Solar_cell
    [8] Martin A Green, ” Silicon solar cells evolution, high-efficiency design and efficiency enhancement,” Semicond. Scl. Techno1 8. (1993).
    [9] Christopher E. Valdivia*a, Eric Desfonds b, Denis Masson b, Simon Fafard b, Andrew Carlson c, John Cook c, Trevor J. Hall a, Karin Hinzer a, “Optimization of antireflection coating design for multi-junction solar cells and concentrator systems,” Proc. of SPIE, Vol. 7099, (2008).
    [10] http://us.sanyo.com/Solar/SANYO-HIT-Technology
    [11] M. Taguchi, K. Kawamoto, S. Tsuge, T. Baba, H.Sakata, M. Morizane, K.Uchihashi, N. Nakamura, S.Kiyama, and O. Oota., ” HIT cells - high efficiency crystalline si cells with novel structure,” Progress in Photovoltaics: Research and Applications, Vol. 8, p. 503, (2000).
    [12] E. Vazsonyi!, K. De Clercq, R. Einhaus, E. Van Kerschaver, K. Said, J. Poortmans, J. Szlufcik, J. Nijs, “Improved anisotropic etching process for industrial texturing of silicon solar cells,” Solar Energy Materials & Solar Cells 57, p. 179-188, (1999).
    [13] Hsiao-Yen Chung, Chiun-Hsun Chen, and Hsin-Sen Chu , “Analysis of pyramidal surface texturization of silicon solar cells by molecular dynamics simulations,” International Journal of Photoenergy, Vol. 2008, Art. 282791, p. 6, (2008).
    [14] Hyo Sik Chang, Hyun Chul Jung and Hyoung Tae Kim, “Improved light trapping structure for monocrystalline silicon,” Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology, Icheon Gyeounggi, Vol. 978, p. 4244, (2010).
    [15] M. Cid *, N. Stem, C. Brunetti, A.F. Beloto, C.A.S. Ramos, ” Improvements in anti-reflection coatings for high-efficiency silicon solar cells,” Surface and Coatings Technology, Vol. 106, p. 117, (1998).
    [16] J. Zhao and Martin A. Green, “Optimized antireflection coatings for high efficiency silicon solar cells,” IEEE Transaction on Electron Device., Vol. 38, No. 8, (1991).
    [17] Armin G. Aberle , “Surface passivation of crystalline silicon solar cells:A Review,” Prog. Photovolt: Res. 8, Vol. 362-376, (2000).
    [18]http://www.alexandrite.net/chapters/chapter7/methods-of-producing-synthetic-alexandrite.html
    [19] T.F. Ciszek*, T.H. Wang, ”Silicon defect and impurity studies using float-zone crystal growth as a tool,” Journal of Crystal Growth Vol. 237–239, p. 1685, (2002).
    [20] Jung M. Kim and Young K. Kim*,z, ” Saw damage induced Structural defects on the surface of silicon crystals,” Journal of The Electrochemical Society, Vol.152, p. 189-192, (2005).
    [21] S. K. Dhungel, J. Yoo, K. Kim, B. Karunagaran, H. Sunwoo, D. Mangalaraj, and J. Yi, “Effect of pressure on surface passivation of silicon solar cell by forming gas annealing,” Mater. Sci. Semicond. Process., Vol. 7, p.427-431, (2004).
    [22] A. F. Thomson and K.R.McIntosh, ”Degradation of oxide-passivated silicon,” 24th European Photovoltaic Solar Energy Conference, 21-25, (2009).
    [23] Hikaru Kobayashi Asuha, Osamu Maida, Masao Takahashi, and Hitoo Iwasa, “Nitric acid oxidation of si to form ultrathin silicon dioxide layers with a low leakage current density,” J. Appl. Phys. 94,p. 7328, (2003).
    [24] Thomas Lauinger, Jan Schmidt, Armin G. Aberle, and Rudolf Hezel, “Record low surface recombination velocities on 1 Ω cm p-silicon using remote plasma silicon nitride passivation,” Appl. Phys. Lett., Vol. 68, No. 9, p. 1232-1234, (1996).
    [25] B. Sopori and Y. Zhang, “H-diffusion mechanism(s) in PECVD nitride passivation of si solar cells,” NCPV 1st Conf. Program Review Meeting, Lakewood Colorado, p. 14-17, (2001) .
    [26] I. Martin, M. Vetter, A. Orpella, J. Puigdollers, A. Cuevas and R. Alcubilla, “Surface passivation of p-type crystalline Si by plasma enhanced chemical vapor deposited amorphous SiCx: H films,” Appl. Phys. Lett., Vol. 79, No. 14, p. 2199-2201, (2001).
    [27] Stefan Dauwe. Jan Schmidt, and Rudolf Hezel, “Very low surface recombination velocities on p-and n-type silicon wafers passivated with hydrogenated amorphous silicon films,” Photovoltaic Specialists Conference, p. 1246-1249, (2002).
    [28] Zhizhang Chen, Peyman Sana, Jalal Salami, and Ajeet Rohatgi, ” A Novel and effective PECVD SiO2/SiN antireflection coating for si solar cells,” Transactions on Electron Devices, Vol. 40, No. 6, (1993).
    [29] Jan Schmidt1, Mark Kerr and Andr´es Cuevas, ”Surface passivation of silicon solar cells using plasma-enhanced chemical-vapour-deposited SiN films and thin thermal SiO2/plasma SiN stacks,” Semicond. Sci. Technol. 16, p. 164, (2001).
    [30] M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa and Y. Kuwano, “Development of new a-Si/c-Si heterojunction solar cells: ACJ-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer) ,” Jpn. J. Appl. Phys. 31 , p. 3518-3522, (1992).
    [31] M. Taguchi , K. Kawamoto, S. Tsuge, T. Baba, H. Sakata, M. Morizane, K. Uchihashi, N. Nakamura, S. Kiyama and O. Oota, “HITTM cells - high-efficiency crystalline Si cells with novel structure,” Prog. Photovolt: Res. 8, p. 503-513, (2000).
    [32]Dieter K. Schroder, Daniel L. Meier, ”Solar cell contact resistance-A Review,” IEEE Transactions on Electron Devices, Vol. 31, No. 5, (1984).
    [33]R. R. King, R. A. Sinton, R. M. Swanson, ”Studies of diffused phosphorus emitters: saturation current, surface recombination velocity, and quantum efficiency,” IEEE Transactions on Electron Devices, Vol. 37, No. 2, (1990).
    [34] A. Mouhoub, B. Benyahia, B. Mahmoudi and A. Mougas, ” Selective emitters for screen printed multicrystalline silicon solar cells,” Rev. Energ. Ren.: ICPWE p. 83-86, (2003).
    [35] E. Urrejola1, K. Peter1, A. Soiland2, E. Enebakk2, ”〖POCl〗_3 diffusion with in-situ SiO_2 barrier for selective emitter multicrystaline solar grade silicon s olar cells,” the 24th European Photovoltaic Solar Energy Conference, p. 21–25, (2009).
    [36] Yung-HsienWu, Lun-Lun Chen, Jia-Rong Wu and Min-Lin Wu, ”Selective emitter solar cell formation by NH3 plasma nitridation and single diffusion,” semiconductor science and technology, Semicond. Sci. Technol. 25, (2010).
    [37] B. Hallam, S. Wenham, A. Sugianto, L. Mai, C. Chong, M. Edwards, D. Jordan, and P. Fath, ”Record large area p-type CZ production cell efficiency of 19.3% based on LDSE Technology,” IEEE journal of photovoltaics, Vol. 1, No. 1, (2011).
    [38] Christiana B. Honsberg, Jeffrey E. Cotter, Keith R. McIntosh, Stephen C. Pritchard, Bryce S. Richards, and Stuart R. Wenham,” Design Strategies for Commercial Solar Cells Using the Buried Contact Technology,” IEEE transactions on electron devices, Vol. 46, No. 10, (1999).
    [39] Antonio Luque, Steven Hegedus, ”Handbook of photovoltaic science and engineering,” WILEY
    [40] http://en.wikipedia.org/wiki/Pn_junction
    [41] Toru Sawada, Norihiro Terada, Sadaji Tsuge, Toshiaki Baba, Tsuyoshi Takahama, Kenichiro Wakisaka, Shinya Tsuda and Shoichi Nakano “High efficiency a-Si c-Si heterojunction solar cell,” IEEE, First WCPEC; Dec. 5-9, (1994).
    [42] http://en.wikipedia.org/wiki/Air_mass
    [43]Martin A. Green, ”Solar Cells - operating principles, technology, and system applicetions,” Prentice-Hall, Inc., Englewood Cliffs, N.J. 07632, (1982).
    [44]黃惠良 著,”太陽電池”五南出版社發行(2008).
    [45]Stephen J. Fonash, ”Solar cell device physics 2nd ed,” Elsevier, (2010).
    [46] H. Park, S. Kwon, J. S. Lee, H. J. Lim, S. Yoon and D. Kim, “Improvement on surface texturing of single crystalline silicon for solar cells by saw-damage etching using an acid solution,” Solar Energy Materials & Solar Cells,Vol. 93,p. 1773, (2009).
    [47] P. Kittidachachan, T. Markvart, G.J. Ensell, R.Gessf and D.M. Bagnall, ” An analysis of a "dead layer" in the emitter of n+pp+ solar cells,” Photovoltaic Specialists Conference, p.1103-1106, (2005).
    [48] Young-Woo Ok, Ajeet Rohatgi, Yeon-Ho Kil, Sung-Eun Park, Dong-Hwan Kim, Joon-Sung Lee, and Chel-Jong Choi, ”Abnormal dopant distribution in POCL3 diffused N+ emitter of textured silicon solar cells,” IEEE electron device letters, Vol. 32, No. 3, (2011).
    [49] Matthew Edwards a, Stuart Bowden b, Ujjwal Das b, Michael Burrows b, ” Effect of texturing and surface preparation on lifetime and cell performance in heterojunction silicon solar cells,” Solar Energy Materials & Solar Cells, Vol. 92, p. 1373– 1377, (2008).
    [50] Francisco Llopis, Ignacio Tobías, ” Texture profile and aspect ratio influence on the front reflectance of solar cells,” J. Appl. Phys. 100,Vol. 124504, (2006).
    [51] Z. Iqbal, S. VepYek~,A. P. Webb and P. Capezzuto,” Raman scattering from small particle size polycryatalline silicon,” Solid State Communications, Vol. 37, p. 993–996, (1981).
    [52] H. Richter, Z.P. Wang , and L. Ley, ” The one phonon Raman spectrum in microcrystalline silicon,” Solid State Communications, Vo1.39, p.625, (1981).
    [53] G. Lucovsky, R. J. Nemanich and J. C. Knights, ”Structural interpretation of the vibrational spectra of a-Si:H alloys,” Phys. Rev. B, Vol. 19, p. 2064, (1979).
    [54] M. H. Srodsky, Manuel Cardona and J. J. Cuomo, ”Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering,” Physical Rev. B, Vol. 16, No.8, (1977).
    [55] M. Z. Burrowsa, U. K. Das, R. L. Opila, R. W. Birkmire, ”Role of hydrogen bonding environment in a-Si:H films for c-Si surface passivation,” J. Vac. Sci. Technol. P.683, (2008).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE