研究生: |
何國睿 Ho, Kuo-Jui |
---|---|
論文名稱: |
準八木天線的改善研究和使用寬頻巴倫的新式寬頻偶極天線 Modified Quasi-Yagi Antennas and a New Type of Wideband Dipole Antenna with Broadband Balun |
指導教授: |
鐘太郎
Jong, Tai-Lang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 94 |
中文關鍵詞: | 寬頻偶極天線 、準八木天線 、寬頻巴倫 |
外文關鍵詞: | wideband dipole antenna, quasi-yagi, wideband balun |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一個利用寬頻巴倫(balun)來實現一個新式寬頻偶極天線的架構,可用的頻帶可從1.7GHz~6.2GHz,包含了目前市面上所有通用的網路頻帶標準,即1.71GHz~2.69GHz(GSM1800、GSM1900、UTMS、802.11b、802.11g、802.11n、WiMax、LTE),3.4GHz~3.69GHz(WiMAX),5.15GHz~5.85GHz(802.11a、WiMAX),且在主要頻帶的反射損耗(return loss)皆在-15dB以下。因為偶極天線是個平衡的輸出而輸入常常是用同軸電纜(coaxial cable)等不平衡的輸入,所以必須要利用巴倫來轉換傳輸。此寬頻天線利用微帶線(microstrip)到槽線(slotline)的轉換傳輸來傳送訊號及能量,並在輸入到天線的兩端電流創造出180度的相位差,即造成偶極天線電流同向的效果。此天線的場型在可利用的頻帶幾乎都呈現全向性(omni-directional)的結果,且增益在2dBi~5dBi之間,平均3.56dBi。本論文除了寬頻天線外,還模擬與實作準八木天線(quasi-Yagi)及改良它的巴倫頻寬。利用柴氏(Chebyshev)阻抗轉換器及槽線弧形截線(radial stub)去達到微帶線到共面槽線的轉換傳輸並達到寬頻的特性。除此之外還探討了阻抗匹配的問題,在一定的條件下可以加以利用把天線拆成兩部分設計。實作出的準八木天線主要操作頻帶,在目前所應用最廣泛的2.45GHz附近,除了巴倫頻寬改善外,增益表現及場型都與原本準八木天線相近。本論文希望能在無線網路用的天線提供些微的貢獻。
This thesis proposed a new type of wideband dipole antenna with a wideband balun covering the bands almost from 1.7GHz to 6.2GHz. The proposed dipole antenna is fed in microstrip line and utilizes microstrip to slotline transition method to transmit power. For this dipole antenna, it can be used in all wireless network application including all WLAN and WiMAX bands. The novelty shape of this antenna is designed for more paths of current flows. The radiation patterns are approaching Omni-direction in all bands but the front end has higher gain. It is easy to fabricate because of using FR4 substrate and the gain performance of this antenna is 3.56dBi on the average. Not only design of the wideband dipole antenna is considered in this thesis, but also modification of quasi-Yagi antenna is investigated. The conventional quasi-Yagi antennas have some artifact, so attempts have been made to solve these problems by using the Chebyshev transformer and radial stub to achieve microstrip to coplanar stripline transition and to reach wideband performance. In this section,the impedance matching problems have been discussed,thus we can design antennas from two part through some conditions. The main frequency band is operating in nearby 2.45GHz that is the most popular band we use in wireless network today. With the results obtained, it is hoped that this thesis can make some contributions to the research of wireless networks.
[1] Terrence W. Barrett, “History of ultra w-ideband (UWB) radar & communications: pioneers and innovators”, Proceedings of PIERS2000.
[2] Federal Communications Commission, First Report and Order, Revision of Part 15 of the Commission's Rules Regarding Ultra-Wideband Transmission Systems, FCC 02-48, April 22, 2002
[3] X. N. Low, Z. N. Chen, and T. S. P. See, “A UWB dipole antenna with enhanced impedance and gain performance,” IEEE Trans. Antennas Propag., vol. 57, no. 10, pp. 2959–2966, Oct. 2009.
[4] M Karlsson, J □sth, S Gong, “Circular Dipole Antennas for Lower and Upper UWB Bands with Integrated Balun,” Conference on Ultra-Wideband 2009, pp. 658-663, Month9-11, 2009.
[5] Mario Leib, Michael Frei, and Wolfgang Menzel, “A Novel Ultra-Wideband Circular Slot Antenna Excited with a Dipole Element,” ICUWB 2009, Sep., pp. 386-390.
[6] M. E. Bialkowski and A. M. Abbosh, Design of a Compact UWB Outof-Phase Power Divider, IEEE Microwave Wireless Compon Lett., vol.17, pp. 289-291, 2007.
[7] K. S. Kim, Ch. S. Kim, I. S. Song and D. Ahn, “A Novel Balun with Vertically Periodic Defected Ground Structure,” IEEE Region 10 Conference 2006, pp. 1-4, 2006.
[8] B. Schuppert, “Microstrip/slotline transitions: Modeling and experimental investigation,” IEEE Trans. Microw. Theory Tech., vol. 36, pp. 1272–1282, Aug. 1988.
[9] J. Chramiec, “Reactances of slotline short and open circuits on alumina substrate,” IEEE Trans. Microw Theory Tech, vol. 37, pp. 1638–1641, 1989.
[10] K. S. Yngvesson, T. L. Korzeniowski, Y. Kim, E. L. Kollberg, and J. F. Johansson, “The tapered slot antenna – a new integrated element for millimeter-wave applications,” IEEE Trans. Microwave Theory Tech., vol. 37, pp. 365-374, 1989.
[11] T.-G. Ma and S.-K. Jeng, “Planar miniature tapered-slot-fed annular slot antennas for ultrawide-band radios,” IEEE Trans. Antennas Propag., vol. 53, no. 3, pp. 1194–1202, Mar. 2005.
[12] Tzyh-Ghuang Ma; Shyh-Kang Jeng, "A printed dipole antenna with tapered slot feed for ultrawide-band applications," IEEE Trans. Antennas and Propag., vol. 53, no. 11, pp. 3833-3836, Nov. 2005.
[13] W.-H. Tu and K. Chang, “Wide-band microstrip-to-coplanar stripline/slotline transitions,”IEEE Trans. Microw. Theory Tech., vol. 54, no. 3, pp. 1084–1089, Mar. 2006.
[14] J. Rahola, J. Ollikainen,”Analysis of isolation of two-port antenna systems using simultaneous matching,” Proceedings of EuCAP 2007 European Conference on Antennas & Propagation, Edinburg, UK, 11-16 November 2007, paper: ThPA.016.
[15] 胡萬璁, “多頻帶圓形單極天線之研製,□國立中央大學電機工程所碩士論文, 2009.
[16] 陳俊儀, “平面近場量測系統之研究與建立,□國立中央大學電機工程所碩士論文, 2003.
[17] 蔡孟學, “新型雙E型狹縫平板單極天線的設計及應用,□國立成功大學電機工程所碩士論文, 2006.
[18] 郭啟仁, “雙頻槽形天線與印刷式分集天線,□國立交通大學電信工程所碩士論文,2000
[19] 方國誌, “超寬頻共平面波導帶通濾波器之研製,□國立中央大學電機工程所碩士論文, 2006.
[20] Comino-Garcia, V. R. Casaleiz, E. Marquez-Segura, P. Otero, and C. Camacho-Penalosa, “Balun effects in the Quasi-Yagi antenna,” IEEE Mediterranean Electrotechnical Conference (MELECON2006), pp. 320–323, May 16–19, 2006.