研究生: |
許博雅 Hsu, Po-Ya |
---|---|
論文名稱: |
可撓式ITO/PEN半固態染料敏化太陽能電池之電極特性與製程研究 Fabrication of Highly Efficient Flexible Dye-sensitized Solar Cells Based on Quasi-solid State Electrolytes |
指導教授: |
開執中
李欣芳 |
口試委員: |
開執中
季昀 丁志明 童永樑 李欣芳 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 124 |
中文關鍵詞: | 染料敏化太陽能電池 、半固態電解質 、可撓式基板 |
外文關鍵詞: | Dye sensitized solar cell (DSC), ITO/PEN, Quasi-solid state electrolyte |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以三種不同組成之二氧化鈦奈米粒子(20nm銳鈦礦相, P25與ST01 ) ,搭配可增長入射光路徑之100nm散射顆粒,製備低溫無黏著劑(binder free)之二氧化鈦漿料,再利用刮刀塗佈法與加壓製程,於ITO/PEN塑膠基板上製作出二氧化鈦光電極應用於可撓式染料敏化太陽能電池。本實驗並以半固態電解質取代液態電解液,藉由添加無機奈米顆粒或高分子膠化劑加以固化離子液體電解質,以改善DSCs元件漏液與封裝困難的問題,經由電池元件組裝及光電特性量測結果顯示,以二氧化鈦奈米顆粒膠化之半固態電解質具有最佳的光電轉換效率。
藉由不同薄膜厚度、加壓製程與染料吸附條件測試,可得到光電極於ITO/PEN塑膠基板上之製程最佳參數,FE-SEM可觀察光電極經加壓製程處理後,其二氧化鈦奈米顆粒間具有更緊密之連結。分析三種不同二氧化鈦組成之ITO/PEN光電極與化學浸泡沉積法Pt玻璃對電極組裝而成的DSCs元件,發現利用P25 (21nm, 75%銳鈦礦相與25%金紅石相)二氧化鈦奈米顆粒與100 nm (銳鈦礦相) 散射顆粒組成之ITO/PEN 光電極於100 mW/cm2光強度下可得到最佳的光電轉換效率6.53%。利用此光電極分別與濺鍍或浸泡沉積法製備之Pt對電極於ITO/PEN上,所製得之全塑膠基板可撓式染料敏化太陽能電池,可達到最高4.67%之光電轉換效率。
In this study, several attempts have been made to fabricate highly efficient flexible dye-sensitized solar cells based on quasi-solid state electrolytes. Ionic gel electrolytes by dispersing various nanoparticles or polymers into ionic liquid electrolytes and assembled DSCs were prepared. The DSCs device based on the ionic gel electrolyte solidified by TiO2 nanoparticles yielded the best performance. Three different kinds of the titanium dioxide (20nm pure anatase, P25 and ST01) were dispersed in solvent to prepare binder-free nanocrystalline TiO2 pastes. Incorporation of large nanoparticles (100 nm) has been employed as light-scattering centers to increase the optical length in the film, and an enhanced light-harvesting has effect by scattering. A static mechanical compression technique as the post-treatment is employed to the flexible ITO/PEN photoelectrodes in order to enhance the particles connection.
The construction of the film was optimized to elicit high photovoltaic performance. Effect of the loading of TiO2 thickness of TiO2 film on the photovoltaic performance was first investigated with the sensitizer N719 in combination of TiO2 solidified quasi-solid electrolyte. A solar cell with platinum-coated FTO glass counter electrode and ITO/PEN photoelectrode, prepared by an ethanol based low-temperature TiO2 paste composed of a mixture of P25 (21nm, 25% rutile and 75% anatase) and 100 nm anatase TiO2 particles, yielded highest conversion efficiencies of 6.53% under 1 sun illumination. All plastic DSCs are also investigated by applying Pt-sputtered or Pt-spread ITO/PEN counter electrodes. The all plastic DSC with Pt-sputtered ITO/PEN counter electrode yields a light to electricity conversion efficiency of 4.67% under 1 sun illumination.
[1] M. Gratzel, Nature, 414, 338-344 (2001)
[2] M. Gratzel, Nature, 403, 363 -364 (2000)
[3] R. Katoh, A. Furube, A.V. Barzykin, H. A. Arakawa, M. Tachiya, Coord. Chem. Rev. 248, 13 (2004).
[4] B. Oregan, M. Gratzel, Nature, 353, 737-740 (1991)
[5] M. K. Nazeeruddin, A. Key, I. Rodicio, R. Humphry-Baker, E.Muller, P. Liska, N. Vlachopulos, M Gratzel, J.Am. Chem.Soc., 115, 6382 (1993)
[6] M. K. Nazeeruddin, P. Pėchy,T. Renouard, S. M. Zakeerudin, R. Humphry-Baker, P.Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Gratzel, J. Am. Chem. Soc.,123, 1613 (2001)
[7] N. Papageorgiou, W. Maier, M. Gratzel, Journal of the Electrochemical Society 144, 876 (1997)
[8] P. Wang, S. M. Zakekruddin, P. Comte, I. Exnar, M. Gratzel, J. Am. Chem. Soc. Commun.125, 1166 (2003)
[9] P. Wang, S. M. Zakekruddin, M. Gratzel, Journal of Fluorine Chemistry 125, 1241–1245 (2004)
[10] H. Yang, C. Yu, Q. Song, Y. Xia , F. Li , Z. Chen, X. Li, T. Yi, C. Huang, Chem. Mater.18, 5173 (2006)
[11] L. Han, N. Koide, Y. Chiba, T. Mitate, Appl. Phys. Lett. 84, 2433 (2004)
[12] L. Han, N. Koide, Y. Chiba, A. Islam, T. Mitate. C. R, Chim. 9, 645 (2006)
[13] Q. Wang, J. Moser, M. Gratzel, J. Phys. Chem. B 109, 14945-14953 (2005)
[14] M. Toivola, J. Halme, K. Miettunen, K. Aitola, Peter D. Lund, Int. J. Energy Res. 33, 1145-1160 (2009)
[15] S. Ito, N.C. Ha, G. Rothenberger, P. Liska, P. Comte, S. Zakeeruddin, P. Pechy, M. Khaja, M. Gratzel, Chem. Commun., 4004-4006 (2006)
[16] P. Wang, S.M. Zakeeruddin, M. Gra‥tzel, J. Flu. Chem. 125, 8, 1241-1245 (2004)
[17] P. Wang, S.M. Zakeeruddin, J.E. Moser, M.K. Nazeeruddin, T.Sekiguchi, M. Gra‥tzel, Nature Materials 2, 402 - 407 (2003).
[18] P. Wang, S.M. Zakeeruddin, I. Exnar, M. Gra‥tzel, Chem. Commun., 2972-2973 (2002)
[19] P. Wang, S.M. Zakeeruddin, P. Comte, I. Exnar, M. Gra‥tzel, J. Am. Chem. Soc., 125,1166–1167 (2003)
[20] Hiroki Usui, Hiroshi Matsui, Nobuo Tanabe, Shozo Yanagida, Journal of Photochemistry and Photobiology A: Chemistry. 164, 97-101 (2004)
[21] M. Berginc , M.Hočevar , U. Opara Krašovec , A. Hinsch , R. Sastrawan , M. Topič, Thin Solid Films. 516, 4645-4650 (2008)
[22] S. Nakade, Y. Saito, W. Kubo, T. Kanzaki, T. Kitamura, Y. Wada, S. Yanagida , Electrochemistry Communications. 5, 804-808 (2003)
[23] Chih-Ming Chen, Han-Sheng Shiu, Sheng-Jye Cherng, Tzu-Chien Wei, Journal of Power Sources.188, 319-322 (2009)
[24] Jong Hyuk Park, Kyu Jin Choi, Sang Wook Kang ,Yong Soo Kang , Junkyung Kim, Sang-Soo Lee, Journal of Power Sources. 183, 812-816 (2008)
[25] Jong Hak Kim, Moon-Sung Kang, Young Jin Kim, Jongok Won, Nam-Gyu Park and Yong Soo Kang, Chem. Commun., 1662-1663 (2004)
[26] Jing Zhang, Hongwei Han, Sujuan Wu, Sheng Xu, Ying Yang, Conghua Zhou, Xingzhong Zhao, Solid State Ionics, Volume 178, Issues 29-30, December 2007, Pages 1595-1601
[27] Kun-Mu Lee, Po-Yen Chen, Chuan-Pei Lee, Kuo-Chuan Ho, Journal of Power Sources. 190, 573-577 (2009)
[28] Toshihito Kato, Takashi Kado, Shuhei Tanaka, Akio Okazaki, and Shuzi Hayase, J. Electrochem. Soc.153, A626-A630 (2006)
[29] Yasuo CHIBA, Ashraful ISLAM, Yuki WATANABE, Ryoichi KOMIYA, Naoki KOIDE and Liyuan HAN, Japanese Journal of Applied Physics. 45, L638–L640 (2006)
[30] P. Wang, S. M. Zakeeruddin, J.E. Moser, M. Gratzel. J. Phys. Chem. B 107, 13280 (2003)
[31] Ryuji Kawano, Hiroshi Matsui, Chizuru Matsuyama, Akihiro Sato, Md. Abu Bin Hasan Susan, Nobuo Tanabe and Masayoshi Watanabe.Journal of Photochemistry and Photobiology A: Chemistry. 164, 87-92 (2004)
[32] M. K. Nazeeruddin, C. Klein, P. Liska and M. Graetzel, Coord. Chem.Rev., 249, 1460 (2005)
[33] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pattersson. Chem. Rev. 110, 6595-6663 (2010)
[34] Cao F, Oskam G, Meyer G, Searson P, J. Phys. Chem. B 100, 17021–17027 (1996)
[35] Solbrand A et al., J. Phys. Chem. B 101, 2514–2518 (1997)
[36] Solbrand A et al., J. Phys. Chem. B 103, 1078–1083 (1999)
[37] Sommeling P et al., Sol. Energy Mater. Sol. Cells 62, 399–410 (2000)
[38] R. Konenkamp, R. Henninger, P. Hoyer, J. Phys. Chem.,97,7328 (1993)
[39] A. Kay, R. Humphry-Baker, M. Gratzel, J. Phys. Chem.,98, 952 (1994)
[40] P. Bonhote, E. Gogniat, S. Tingry, C. Barbe, N. Vlachopoulos, F. Lenzmann, P. Comte, M. Gratzel, J. Phys. Chem. B. 102,1498 (1998)
[41] M. Gratzel, Coord. Chem. Rev., 111, 167 (1991)
[42] J. Desilvestro, M. Gratzel, L. Kaven, J. Moser, J. Am, Chem. Soc.
107, 2988 (1985)
[43] M. Gratzel. J. Photochemistry and Photobiology C: Photochemistry Reviews. 4, 145-153 (2003)
[44] C. J. Barbe, F. Arendse, P. Comte, M.Jirousek, F. Lenzmann, V.
Shkiover, M. Gratzel, J. Am. Ceram. Soc.,80, 3157 (1997)
[45] M. Gratzel, M. Inorg. Chem 44, 6841-6851 (2005)
[46] Wang, P. K., C. Humphry-Baker, R. Zakeeruddin, M. Gratzel. M. J. Am. Chem. Soc 127, 808-809 (2005)
[47] Stergiopoulos, T. A., I. Kalbac, M. Lukes, I. Falaras, P.J. Mater.
Process. Technol 161, 107-112 (2005)
[48] Hara, K. S., H. Singh, L.P.Islam, A, Katoh, R. Yanagida, M. J.
Photochem. Photobiol. A-Chem 145, 117-122 (2001)
[49] J. Am. Chem. Soc. 115, 6382-6390 (1993)
[50] J. Am. Chem. Soc. 123, 1613-1624 (2001)
[51] J. Am. Chem. Soc. 127: 16835-16847 (2005)
[52] Jihuai Wu, Zhang Lan, Sanchun Hao, Pure Appl. Chem. 80, 2241–2258 (2008)
[53] Kiyoaki Imotoa, Kohshin Takahashi, Solar Energy Materials & Solar Cells 79, 459–469 (2003)
[54] Takurou N. Murakami, Seigo Ito, Journal of The Electrochemical Society, 153, A2255-A2261 (2006)
[55] A. Zaban et al., J. Phys. Chem. B 107, 6022-6025 (2003)
[56] Zhong-Sheng Wang, Hiroshi Kawauchi, Takeo Kashima and Hironori Arakawa. Coordination Chemistry Reviews. 248, 1381-1389 (2004)
[57] 簡國明,“奈米二氧化鈦專利地圖級分析”,國科會
[58] Nelson, Jenny. The Physics of Solar Cells.. World Scientific Pub Co Inc. 2003
[59] Aurelien Du Pasquier, Mattew Stewart, Timothy Spitler and Mike Coleman. Solar Energy Materials and Solar Cells. 93, 528-535 (2009)
[60] S.Anandan , Current Applied Physics. 8, 99 (2008)
[61] S.R. Scully et al., Synthetic Metals. 144, 291 (2004)
[62] P. Wang et al, Journal of Fluorine Chemistry. 125, 1241 (2004)
[63] Moon-Sung Kang, Kwang-Soon Ahn, Ji-Won Lee, Journal of Power Sources. 180, 896–901 (2008)
[64] Seigo Ito, Ngoc-Le Cevey Ha, Guido Rothenberger, Paul Liska, Pascal Comte, Shaik M. Zakeeruddin, Peter Pechy, Mohammad Khaja Nazeeruddin and Michael Gratzel. Chem. Commun., 4004-4006 (2006)
[65] Park H, Jun Y, Yun H-G, Lee S-Y, Kang MG. Journal of the Electrochemical Society. 155, F145-F149 (2008)
[66] Gerrit Boschloo, Henrik Lindstrom, Eva Magnusson, Anna Holmberg and Anders Hagfeldt. Journal of Photochemistry and Photobiology A: Chemistry. 148, 11-15 (2002)
[67] Durr M, Schmid A, Obermaier M, Rosselli S, Yasuda A, Nelles G. Nat Mater. 4, 607-11 (2005)
[68] Takeshi Yamaguchi, Nobuyuki Tobe, Daisuke Matsumoto and Hironori Arakawa. Chem. Commun.4767-4769 (2007)
[69] Takeshi Yamaguchi, Nobuyuki Tobe, Daisuke Matsumoto, Takuma Nagai and Hironori Arakawa. Solar Energy Materials and Solar Cells. 94, 812-816 (2010)
[70] Tsutomu Miyasaka, Masashi Ikegami, and Yujiro Kijitori. J. Electrochem. Soc. 154, A455-A461 (2007)
[71] Zhong-Sheng Wang, Hiroshi Kawauchi, Takeo Kashima and Hironori Arakawa. Coordination Chemistry Reviews. 248, 1381-1389 (2004)