簡易檢索 / 詳目顯示

研究生: 蔡元正
Tsai, Yuan-Cheng
論文名稱: 階層式規則中孔洞碳材應用於電容去離子法之研究
Fabrication of hierarchically ordered mesoporous carbon for capacitive deionization application
指導教授: 董瑞安
Doong, Ruey-an
口試委員: 孫毓璋
吳劍侯
侯嘉洪
陳筱華
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 167
中文關鍵詞: 階層式規則中孔洞碳材電容去離子循環伏安法比電容比電吸附能力
外文關鍵詞: Hierarchically ordered mesoporous carbon, Capacitive deionization, Cyclic voltammetry, Specific capacitance, Specific electrosorption capacity
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 水資源缺乏與污染為當前人類所面臨的環境危機之一,由於人類以往的過度開發與濫用資源,導致氣候變遷、溫室效應等全球環境危機的發生,進一步造成不同區域的水資源匱乏問題。此外,工業行為與人類活動所產生的廢棄物質(如:污廢水、空氣污染、一般及有害廢棄物等)更直接污染了表面水體,進而產生疾病與死亡。為了將現行水處理技術更環境友善,開發具綠色水處理技術刻不容緩。本研究以階層式規則中孔洞碳材結合電容去離子法的系統來探討在低能源耗損的條件下,有效分離與去除離子的可行性,以作為硬水軟化、脫鹽淡化之用。由於階層式規則中孔洞碳材具有高比表面積、高孔洞體積與良好之電容特性,應用於離子的電吸附則可獲得良好的效果。電容去離子法相較於傳統去離子的程序(如:薄膜、離子交換樹脂、活性碳吸附等)有(1)操作為低電壓狀態,能量損耗少;(2)電極可反轉,並使因電吸而濃縮之離子可以再釋出,故有離子物質回收與資源化之潛力;(3) 無二次污染物問題等優點,因此有效的開發此系統將有助於降低碳排放量與解決水資源污染問題。
    本研究中,透過軟模板結合溶劑揮發誘導自組裝法以甘蔗渣作為載體成功地開發出階層式規則中孔洞碳材(HOMC),並藉由各式電子顯微鏡、氮氣吸脫附特性分析、X光繞射儀、元素分析儀、電化學儀等進行材料特性與電容分析。為了強化材料特性,本研究分別以硝酸(HOMC-H)、高溫二氧化碳(HOMC-C)進行材料改質,並對鈣離子進行電容測量與電吸附效率之研究。研究發現,上述三種材料在循環伏安法的量測圖形屬對稱形狀,表示具有良好的電雙層特性。經硝酸改質之階層式規則中孔洞碳材(HOMC-H)可達到93.2 F g-1之比電容,是HOMC的1.45倍及HOMC-C的3.45倍,另在1.2V電壓下HOMC-H電極對於鈣離子可達115.4 μmol g-1的比電吸附能力(Specific electrosorption capacity, SEC)遠高於其他二種材料。為了更進一步增加電容去離子的效率,研究選擇奈米銀粒子作為陽極並以HOMC作為陰極,以非對稱電極方式對鈉離子進行電吸附之研究。在1.2V電壓下,可以發現非對稱電極可以展現出絕佳的電容去離子能力,在批次與連續反應中分別可達356.3及251.6 μmol g−1之比電吸附能力。考量奈米銀的存在可加強水中氯離子的消耗並加強鈉離子的電吸附,本研究另以硝酸銀還原法將銀離子還原至HOMC上使之產生5 nm之奈米銀複合物 (Ag/HOMCs),藉由循環伏安法的量測,可以發現Ag/HOMC-10.0電極在5 mV s−1掃速下可以達到127.1 F g-1之比電容,分別為HOMC與商用活性碳(AC)的1.22及3.45倍。另在鈉離子去除方面,此複合電極可以達成0.74 μmol m−2比電吸附能力,高於HOMC及AC電極。為了瞭解CDI於實務上的應用可行性,本研究以地下水整治的角度進行測試,測試發現Ag/HOMC-10.0與Ag/HOMC||HOMC電極應用於CDI系統可100%去除水中鎳離子,並且可以總體達成236及289 μmol g−1之比電吸附能力。此外,為達成重金屬鎳源頭減量之目的,Ag/HOMC||HOMC電極被使用於進流廢水鎳離子去除效率之評估,其結果亦可100%去除鎳離子。本研究結果顯示,階層式規則中孔洞碳材作為電容去離子法之電極,可藉由改變材料特性、操作方式等方式達成離子的電吸附,增加硬水軟化、脫鹽淡化的效能並具有去除地下水重金屬能力,將兩者結合作應用確實具有新穎性與發展之潛力。


    The world has been facing a water shortage and pollution due to overdevelopment and resource waste further resulting in climate change and global warming. In addition, industrial production and human activities have been contaminating surface water, and causing disease and deaths. In order for making water treatment environmental-friendly, it is time to innovatively develop green technology for water treatment. This research has investigated the feasibilities of ion separation under lower energy consumption with the combination of hierarchically ordered mesoporous carbons (HOMCs) and capacitive deionization (CDI). The sodium and calcium ions were selected as target ions. Due to the higher specific surface area, pore volume and better capacitance for HOMCs, it is expected that CDI can perform better electrosorption. Comparing with traditional desalination technologies such as membrane, ion exchange and adsorption by active carbons, CDI owns the following benefits: (1) lower energy consumption, (2) the regeneration by reversing potential can release concentrated ions and further recycle them and (3) No secondary contaminants. Therefore, developing this system can help to reduce carbon emission and solve the problem of water shortage.
    In this research, it was successful to fabricate HOMCs using sugarcane bagasse as the sacrificial scaffold by evaporation-induced self-assembly method. Several electron microscopies, nitrogen adsorption-desorption, x-ray diffraction, elemental analysis, electrochemical instrument etc. were used to investigate the properties of carbon materials. In order to enhance the electrochemical property of HOMC, nitric acid and carbon dioxide with high temperature were used to modify it, denoted as HOMC-H and HOMC-C, respectively. After the modification, the performance of capacitance and electrosorption were measured in Ca2+ solution. The symmetric plots in cyclic voltammetry (CV) were observed due to their excellent properties of electric double-layer. The specific capacitance for HOMC-H electrode at 1 mV s-1 can reach 93.2 F g-1, which is 1.45 and 3.45 times higher than those of as-prepared HOMCs and HOMC-C, respectively. The specific electrosorption capacity (SEC) of HOMC-H electrode for Ca2+ can reach 115.4 mol g-1 which is better than those of other two electrode materials. Furthermore, Ag nanoparticles selected as anode and HOMCs selected as cathode were conducted for increasing Na+ removal rate. The asymmetric Ag||HOMC electrodes show excellent electrosorption capacity toward sodium ion adsorption and the SECs are 356.3 and 251.6 μmol g−1 at 1.2 V in the batch and continuous flowing solutions, respectively. Additionally considering the existence of Ag nanoparticles can enhance the electrosorption of sodium ions due to the removal of chloride ions. The reduction of Ag+ was used to fabricate Ag/HOMC composites with 5 nm in diameter. It is found that 127.1 F/g at 5 mV s−1 for Ag/HOMC-10.0, which has performed the enhancement by 1.22 times and 3.45 times higher than those of HOMCs- and AC-based electrodes. The SEC based on the surface area of materials is 0.74 μmol m−2 for Ag/HOMC-10.0 electrode which is 2.06 times and 1.9 times higher than those HOMC and AC electrodes. Furthermore, in order to realize the feasibility of practicable application by CDI, a case study for groundwater remediation was conducted, and Ag/HOMC- and Ag/HOMC||HOMC-based electrodes can reach 100% of removal to Ni2+ and totally performed 236 and 289 μmol g−1 of SEC, respectively. For the source reduction of nickel in the influent of wastewater, Ag/HOMC||HOMC-based electrodes were chosen to evaluate its removal efficiency and 100% of removal rate can be achieved. This research has shown that CDI with HOMCs-based electrodes can not only enhance the efficiencies of water softening and desalination by the modification of electrode materials and operation modes, but also have good performance of remediating heavy metal in the groundwater. The CDI with HOMCs-based electrodes possess innovative and developing potentials.

    Acknowledge I 中文摘要 II Abstract IV Content index VI Figure index IX Table index XIV Abbreviation list XV Chapter 1 Introduction 1 1-1 General statement 2 1-2 Hierarchically ordered porous carbon 4 1-2-1 Synthesis strategies for ordered porous carbons 4 1-2-2 Mass production for hierarchically ordered mesoporous carbons 8 1-3 Application of ordered porous carbon 14 1-3-1 Superapacitors 14 1-3-2 Lithium-ion batteries 17 1-3-3 Capacitive deionization 19 1-3-3-1 Introduction of capacitive deionization 19 1-3-3-2 Overview of electrochemical reactions and processes in CDI electrodes 22 1-3-3-3 Theory of electric double layer 25 1-3-3-4 Kinetics 28 1-3-3-5 Operational methods 29 1-4 Desalination 32 1-4-1 Traditional technology of desalination 32 1-4-2 Desalination by capacitive deionization 35 1-4-3 Wastewater and groundwater remediation 38 1-5 Motivation 41 1-6 Objectives 42 Chapter 2 Research design 44 2-1 Work plan 45 2-2 Experimental methods and details 46 2-2-1 Chemicals 46 2-2-2 Preparation of phenol-formaldehyde resin 46 2-2-3 Mass production 47 2-2-4 Activation of hierarchically ordered mesoporous carbon 48 2-2-5 Fabrication of Ag/HOMC composites 49 2-3 Characterization 50 2-3-1 X-ray diffraction 50 2-3-2 Electron microscopy 50 2-3-3 Nitrogen adsorption analysis 51 2-3-4 X-ray photoelectron spectroscopy 51 2-3-5 Raman spectroscopy 51 2-3-6 Elemental analysis 52 2-3-7 Fourier-transform infrared spectrometer 52 2-4 Electrochemical measurement 52 2-4-1 Preparation of working electrode 52 2-4-2 Performance measurement 52 2-5 Capacitive deionization 54 2-5-1 Preparation of electrodes 54 2-5-2 Electrosorption experiments 54 Chapter 3 Activation of hierarchically ordered mesoporous carbons for enhanced capacitive deionization 57 Abstract 58 3-1 Motivation 59 3-2 Results and discussion 62 3-2-1 Characterization of hierarchically ordered mesoporous carbon 62 3-2-2 Electrochemical properties of HOMCs 74 3-2-3 Enhancement of capacitive deionization 80 3-3 Summary 84 Chapter 4 Asymmetric electrodes for highly efficient capacitive deionization 85 Abstract 86 4-1 Motivation 87 4-2 Results and discussion 89 4-2-1 Characterization of electrode materials 89 4-2-2 Electrochemical characterization 94 4-2-3 Capacitive deionization for ion removal in batch-mode operation 102 4-2-4 The electrode performance in the continuous flowing solutions 108 4-3 Summary 111 Chapter 5 Development of silver/hierarchically ordered mesoporous carbon composited electrode for capacitive deionization 112 Abstract 113 5-1 Motivation 114 5-2 Results and discussion 116 5-2-1 Characterization of Ag/HOMC composites 116 5-2-2 Electrochemical characterization 121 5-2-3 Capacitive deionization to sodium ion removal 128 5-2-4 Kinetics approach 132 5-3 Case study: groundwater remediation and source reduction 138 5-4 Summary 145 Chapter 6 Conclusions and perspectives 146 6-1 Conclusions 147 6-2 Perspectives and suggestions 149 Reference 152

    [1] L. Greenlee, D. Lawler, B. Freeman, B. Marrot, P. Moulin, Reverse osmosis desalination: Water sources, technology, and today's challenges, Water Research, 43 (2009) 2317-2348.
    [2] M. Shannon, P. Bohn, M. Elimelech, J. Georgiadis, B. Marinas, A. Mayes, Science and technology for water purification in the coming decades, Nature, 452 (2008) 301-310.
    [3] R. Semiat, Energy Issues in Desalination Processes, Environmental Science & Technology, 42 (2008) 8193-8201.
    [4] Q. Schiermeier, Purification with a pinch of salt, Nature, 452 (2008) 260-261.
    [5] T. Humplik, J. Lee, S. O'Hern, B. Fellman, M. Baig, S. Hassan, M. Atieh, F. Rahman, T. Laoui, R. Karnik, E. Wang, Nanostructured materials for water desalination, Nanotechnology, 22 (2011).
    [6] M. Elimelech, W. Phillip, The Future of Seawater Desalination: Energy, Technology, and the Environment, Science, 333 (2011) 712-717.
    [7] S. Porada, L. Weinstein, R. Dash, A. van der Wal, M. Bryjak, Y. Gogotsi, P. Biesheuvel, Water Desalination Using Capacitive Deionization with Microporous Carbon Electrodes, Acs Applied Materials & Interfaces, 4 (2012) 1194-1199.
    [8] C. Hou, C. Huang, A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization, Desalination, 314 (2013) 124-129.
    [9] M. Anderson, A. Cudero, J. Palma, Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete?, Electrochimica Acta, 55 (2010) 3845-3856.
    [10] K. Foo, B. Hameed, A short review of activated carbon assisted electrosorption process: An overview, current stage and future prospects, Journal of Hazardous Materials, 170 (2009) 552-559.
    [11] Y. Oren, Capacitive delonization (CDI) for desalination and water treatment - past, present and future (a review), Desalination, 228 (2008) 10-29.
    [12] Z. Peng, D.S. Zhang, L.Y. Shi, T.T. Yan, High performance ordered mesoporous carbon/carbon nanotube composite electrodes for capacitive deionization, Journal of Materials Chemistry, 22 (2012) 6603-6612.
    [13] C. Tsouris, R. Mayes, J. Kiggans, K. Sharma, S. Yiacoumi, D. DePaoli, S. Dai, Mesoporous Carbon for Capacitive Deionization of Saline Water, Environmental Science & Technology, 45 (2011) 10243-10249.
    [14] P. Tripathi, L. Gan, M. Liu, N. Rao, Mesoporous Carbon Nanomaterials as Environmental Adsorbents, Journal of Nanoscience and Nanotechnology, 14 (2014) 1823-1837.
    [15] M. Ryoo, J. Kim, G. Seo, Role of titania incorporated on activated carbon cloth for capacitive deionization of NaCl solution, Journal of Colloid and Interface Science, 264 (2003) 414-419.
    [16] X. Wang, M. Li, Y. Chen, R. Cheng, S. Huang, L. Pan, Z. Sun, Electrosorption of ions from aqueous solutions with carbon nanotubes and nanofibers composite film electrodes, Applied Physics Letters, 89 (2006).
    [17] L. Zou, G. Morris, D. Qi, Using activated carbon electrode in electrosorptive deionisation of brackish water, Desalination, 225 (2008) 329-340.
    [18] D. Zhang, L. Shi, J. Fang, K. Dai, Influence of diameter of carbon nanotubes mounted in flow-through capacitors on removal of NaCl from salt water, Journal of Materials Science, 42 (2007) 2471-2475.
    [19] K. Yang, T. Ying, S. Yiacoumi, C. Tsouris, E. Vittoratos, Electrosorption of ions from aqueous solutions by carbon aerogel: An electrical double-layer model, Langmuir, 17 (2001) 1961-1969.
    [20] Z. Peng, D. Zhang, L. Shi, T. Yan, S. Yuan, H. Li, R. Gao, J. Fang, Comparative Electroadsorption Study of Mesoporous Carbon Electrodes with Various Pore Structures, Journal of Physical Chemistry C, 115 (2011) 17068-17076.
    [21] H. Wang, L. Shi, T. Yan, J. Zhang, Q. Zhong, D. Zhang, Design of graphene-coated hollow mesoporous carbon spheres as high performance electrodes for capacitive deionization, Journal of Materials Chemistry a, 2 (2014) 4739-4750.
    [22] H. Wang, D. Zhang, T. Yan, X. Wen, L. Shi, J. Zhang, Graphene prepared via a novel pyridine-thermal strategy for capacitive deionization, Journal of Materials Chemistry, 22 (2012) 23745-23748.
    [23] H. Wang, D. Zhang, T. Yan, X. Wen, J. Zhang, L. Shi, Q. Zhong, Three-dimensional macroporous graphene architectures as high performance electrodes for capacitive deionization, Journal of Materials Chemistry a, 1 (2013) 11778-11789.
    [24] X. Wen, D. Zhang, T. Yan, J. Zhang, L. Shi, Three-dimensional graphene-based hierarchically porous carbon composites prepared by a dual-template strategy for capacitive deionization, Journal of Materials Chemistry a, 1 (2013) 12334-12344.
    [25] D. Zhang, X. Wen, L. Shi, T. Yan, J. Zhang, Enhanced capacitive deionization of graphene/mesoporous carbon composites, Nanoscale, 4 (2012) 5440-5446.
    [26] D. Zhang, T. Yan, L. Shi, Z. Peng, X. Wen, J. Zhang, Enhanced capacitive deionization performance of graphene/carbon nanotube composites, Journal of Materials Chemistry, 22 (2012) 14696-14704.
    [27] H. Jiang, P. Lee, C. Li, 3D carbon based nanostructures for advanced supercapacitors, Energy & Environmental Science, 6 (2013) 41-53.
    [28] H. Nishihara, T. Kyotani, Templated Nanocarbons for Energy Storage, Advanced Materials, 24 (2012) 4473-4498.
    [29] Y. Zhai, Y. Dou, D. Zhao, P. Fulvio, R. Mayes, S. Dai, Carbon Materials for Chemical Capacitive Energy Storage, Advanced Materials, 23 (2011) 4828-4850.
    [30] A. Stein, Z. Wang, M. Fierke, Functionalization of Porous Carbon Materials with Designed Pore Architecture, Advanced Materials, 21 (2009) 265-293.
    [31] K. Ariga, S. Ishihara, H. Abe, M. Li, J. Hill, Materials nanoarchitectonics for environmental remediation and sensing, Journal of Materials Chemistry, 22 (2012) 2369-2377.
    [32] S. Navalon, A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Heterogeneous Fenton Catalysts Based on Activated Carbon and Related Materials, Chemsuschem, 4 (2011) 1712-1730.
    [33] J. Lee, D. Lee, E. Oh, J. Kim, Y. Kim, S. Jin, H. Kim, Y. Hwang, J. Kwak, J. Park, C. Shin, T. Hyeon, Preparation of a magnetically switchable bioelectrocatalytic system employing cross-linked enzyme aggregates in magnetic mesocellular carbon foam, Angewandte Chemie-International Edition, 44 (2005) 7427-7432.
    [34] C. Liang, Z. Li, S. Dai, Mesoporous carbon materials: Synthesis and modification, Angewandte Chemie-International Edition, 47 (2008) 3696-3717.
    [35] C.H. Huang, D. Gu, D.Y. Zhao, R.A. Doong, Direct Synthesis of Controllable Microstructures of Thermally Stable and Ordered Mesoporous Crystalline Titanium Oxides and Carbide/Carbon Composites, Chemistry of Materials, 22 (2010) 1760-1767.
    [36] Y. Zhai, Y. Dou, X. Liu, S. Park, C. Ha, D. Zhao, Soft-template synthesis of ordered mesoporous carbon/nanoparticle nickel composites with a high surface area, Carbon, 49 (2011) 545-555.
    [37] H. Yang, Q. Shi, X. Liu, S. Xie, D. Jiang, F. Zhang, C. Yu, B. Tu, D. Zhao, Synthesis of ordered mesoporous carbon monoliths with bicontinuous cubic pore structure of Ia3d symmetry, Chemical Communications, (2002) 2842-2843.
    [38] A. Lu, F. Schuth, Nanocasting: A versatile strategy for creating nanostructured porous materials, Advanced Materials, 18 (2006) 1793-1805.
    [39] Y. Xia, Z. Yang, R. Mokaya, Templated nanoscale porous carbons, Nanoscale, 2 (2010) 639-659.
    [40] F. Su, Z. Zhou, W. Guo, J. Liu, X. Tian, X. Zhao, L. Radovic, Template Approaches to Preparing Porous Carbon, Chemistry and Physics of Carbon, Vol 30, 30 (2008) 63-128.
    [41] J. Lee, J. Kim, T. Hyeon, Recent progress in the synthesis of porous carbon materials, Advanced Materials, 18 (2006) 2073-2094.
    [42] Y. Wan, Y. Shi, D. Zhao, Supramolecular aggregates as templates: Ordered mesoporous polymers and carbons, Chemistry of Materials, 20 (2008) 932-945.
    [43] C. Yang, C. Weidenthaler, B. Spliethoff, M. Mayanna, F. Schuth, Template synthesis of ordered mesoporous carbon with polypyrrole as carbon precursor, Chemistry of Materials, 17 (2005) 355-358.
    [44] M. Tiemann, Repeated templating, Chemistry of Materials, 20 (2008) 961-971.
    [45] H. Lin, C. Chang-Chien, C. Tang, C. Lin, Synthesis of p6mm hexagonal mesoporous carbons and silicas using Pluronic F127-PF resin polymer blends, Microporous and Mesoporous Materials, 93 (2006) 344-348.
    [46] J. KNOX, B. KAUR, G. MILLWARD, STRUCTURE AND PERFORMANCE OF POROUS GRAPHITIC CARBON IN LIQUID-CHROMATOGRAPHY, Journal of Chromatography, 352 (1986) 3-25.
    [47] C. Goltner, M. Weissenberger, Mesoporous organic polymers obtained by "twostep nanocasting", Acta Polymerica, 49 (1998) 704-709.
    [48] B. Hatton, K. Landskron, W. Whitnall, D. Perovic, G. Ozin, Past, present, and future of periodic mesoporous organosilicas - The PMOs, Accounts of Chemical Research, 38 (2005) 305-312.
    [49] Y. Wan, Y. Shi, D. Zhao, Designed synthesis of mesoporous solids via nonionic-surfactant-templating approach, Chemical Communications, (2007) 897-926.
    [50] Y. Lu, R. Ganguli, C. Drewien, M. Anderson, C. Brinker, W. Gong, Y. Guo, H. Soyez, B. Dunn, M. Huang, J. Zink, Continuous formation of supported cubic and hexagonal mesoporous films by sol gel dip-coating, Nature, 389 (1997) 364-368.
    [51] D. Grosso, F. Cagnol, G. Soler-Illia, E. Crepaldi, H. Amenitsch, A. Brunet-Bruneau, A. Bourgeois, C. Sanchez, Fundamentals of mesostructuring through evaporation-induced self-assembly, Advanced Functional Materials, 14 (2004) 309-322.
    [52] A. Vu, Y. Qian, A. Stein, Porous Electrode Materials for Lithium-Ion Batteries - How to Prepare Them and What Makes Them Special, Advanced Energy Materials, 2 (2012) 1056-1085.
    [53] M. Bruno, N. Cotella, M. Miras, C. Barbero, Porous carbon-carbon composite replicated from a natural fibre, Chemical Communications, (2005) 5896-5898.
    [54] B. Hu, K. Wang, L. Wu, S. Yu, M. Antonietti, M. Titirici, Engineering Carbon Materials from the Hydrothermal Carbonization Process of Biomass, Advanced Materials, 22 (2010) 813-828.
    [55] R. Caruso, Micrometer-to-manometer replication of hierarchical structures by using a surface sol-gel process, Angewandte Chemie-International Edition, 43 (2004) 2746-2748.
    [56] S. Holmes, B. Graniel-Garcia, P. Foran, P. Hill, E. Roberts, B. Sakakini, J. Newton, A novel porous carbon based on diatomaceous earth, Chemical Communications, (2006) 2662-2663.
    [57] H.J. Liu, X.M. Wang, W.J. Cui, Y.Q. Dou, D.Y. Zhao, Y.Y. Xia, Highly ordered mesoporous carbon nanofiber arrays from a crab shell biological template and its application in supercapacitors and fuel cells, Journal of Materials Chemistry, 20 (2010) 4223-4230.
    [58] W. Chen, H. Zhang, Y. Huang, W. Wang, A fish scale based hierarchical lamellar porous carbon material obtained using a natural template for high performance electrochemical capacitors, Journal of Materials Chemistry, 20 (2010) 4773-4775.
    [59] C. Zhao, W. Wang, Z. Yu, H. Zhang, A. Wang, Y. Yang, Nano-CaCO3 as template for preparation of disordered large mesoporous carbon with hierarchical porosities, Journal of Materials Chemistry, 20 (2010) 976-980.
    [60] J.X. Wang, C.F. Xue, Y.Y. Lv, F. Zhang, B. Tu, D.Y. Zhao, Kilogram-scale synthesis of ordered mesoporous carbons and their electrochemical performance, Carbon, 49 (2011) 4580-4588.
    [61] C. Xue, B. Tu, D. Zhao, Facile Fabrication of Hierarchically Porous Carbonaceous Monoliths with Ordered Mesostructure via an Organic-Organic Self-Assembly, Nano Research, 2 (2009) 242-253.
    [62] F. Meldrum, R. Seshadri, Porous gold structures through templating by echinoid skeletal plates, Chemical Communications, (2000) 29-30.
    [63] W. Ogasawara, W. Shenton, S. Davis, S. Mann, Template mineralization of ordered macroporous chitin-silica composites using a cuttlebone-derived organic matrix, Chemistry of Materials, 12 (2000) 2835-+.
    [64] S. Chia, J. Urano, F. Tamanoi, B. Dunn, J. Zink, Patterned hexagonal arrays of living cells in sol-gel silica films, Journal of the American Chemical Society, 122 (2000) 6488-6489.
    [65] M. Anderson, S. Holmes, N. Hanif, C. Cundy, Hierarchical pore structures through diatom zeolitization, Angewandte Chemie-International Edition, 39 (2000) 2707-2710.
    [66] B. Zhang, S. Davis, N. Mendelson, S. Mann, Bacterial templating of zeolite fibres with hierarchical structure, Chemical Communications, (2000) 781-782.
    [67] C. Fowler, W. Shenton, G. Stubbs, S. Mann, Tobacco mosaic virus liquid crystals as templates for the interior design of silica mesophases and nanoparticles, Advanced Materials, 13 (2001) 1266-1269.
    [68] C. Huang, R. Doong, Sugarcane bagasse as the scaffold for mass production of hierarchically porous carbon monoliths by surface self-assembly, Microporous and Mesoporous Materials, 147 (2012) 47-52.
    [69] T. Rufford, D. Hulicova-Jurcakova, K. Khosla, Z. Zhu, G. Lu, Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse, Journal of Power Sources, 195 (2010) 912-918.
    [70] M. Valix, W. Cheung, K. Zhang, Role of chemical pre-treatment in the development of super-high surface areas and heteroatom fixation in activated carbons prepared from bagasse, Microporous and Mesoporous Materials, 116 (2008) 513-523.
    [71] O. Hernandez-Ramirez, S. Holmes, Novel and modified materials for wastewater treatment applications, Journal of Materials Chemistry, 18 (2008) 2751-2761.
    [72] T. Chou, C. Huang, R. Doong, Fabrication of hierarchically ordered porous carbons using sugarcane bagasse as the scaffold for supercapacitor applications, Synthetic Metals, 194 (2014) 29-37.
    [73] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nature Materials, 7 (2008) 845-854.
    [74] L. Zhang, X. Zhao, Carbon-based materials as supercapacitor electrodes, Chemical Society Reviews, 38 (2009) 2520-2531.
    [75] G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chemical Society Reviews, 41 (2012) 797-828.
    [76] S. Yang, K. Chang, H. Tien, Y. Lee, S. Li, Y. Wang, J. Wang, C. Ma, C. Hu, Design and tailoring of a hierarchical graphene-carbon nanotube architecture for supercapacitors, Journal of Materials Chemistry, 21 (2011) 2374-2380.
    [77] S. Yoon, J. Lee, T. Hyeon, S. Oh, Electric double-layer capacitor performance of a new mesoporous carbon, Journal of the Electrochemical Society, 147 (2000) 2507-2512.
    [78] W. Xing, S. Qiao, R. Ding, F. Li, G. Lu, Z. Yan, H. Cheng, Superior electric double layer capacitors using ordered mesoporous carbons, Carbon, 44 (2006) 216-224.
    [79] N. Choi, Z. Chen, S. Freunberger, X. Ji, Y. Sun, K. Amine, G. Yushin, L. Nazar, J. Cho, P. Bruce, Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors, Angewandte Chemie-International Edition, 51 (2012) 9994-10024.
    [80] J. Li, C. Daniel, D. Wood, Materials processing for lithium-ion batteries, Journal of Power Sources, 196 (2011) 2452-2460.
    [81] C. Daniel, Materials and processing for lithium-ion batteries, Jom, 60 (2008) 43-48.
    [82] Y. Fang, Y. Lv, R. Che, H. Wu, X. Zhang, D. Gu, G. Zheng, D. Zhao, Two-Dimensional Mesoporous Carbon Nanosheets and Their Derived Graphene Nanosheets: Synthesis and Efficient Lithium Ion Storage, Journal of the American Chemical Society, 135 (2013) 1524-1530.
    [83] Y. Hu, P. Adelhelm, B. Smarsly, S. Hore, M. Antonietti, J. Maier, Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with high-rate capability, Advanced Functional Materials, 17 (2007) 1873-1878.
    [84] M. Kim, D. Bhattacharjya, B. Fang, D. Yang, T. Bae, J. Yu, Morphology-Dependent Li Storage Performance of Ordered Mesoporous Carbon as Anode Material, Langmuir, 29 (2013) 6754-6761.
    [85] S. Porada, R. Zhao, A. van der Wal, V. Presser, P. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Progress in Materials Science, 58 (2013) 1388-1442.
    [86] A. JOHNSON, J. NEWMAN, DESALTING BY MEANS OF POROUS CARBON ELECTRODES, Journal of the Electrochemical Society, 118 (1971) 510-&.
    [87] Y. OREN, A. SOFFER, ELECTROCHEMICAL PARAMETRIC PUMPING, Journal of the Electrochemical Society, 125 (1978) 869-875.
    [88] L. Zou, L. Li, H. Song, G. Morris, Using mesoporous carbon electrodes for brackish water desalination, Water Research, 42 (2008) 2340-2348.
    [89] L. Li, L. Zou, H. Song, G. Morris, Ordered mesoporous carbons synthesized by a modified sol-gel process for electrosorptive removal of sodium chloride, Carbon, 47 (2009) 775-781.
    [90] X.R. Wen, D.S. Zhang, L.Y. Shi, T.T. Yan, H. Wang, J.P. Zhang, Three-dimensional hierarchical porous carbon with a bimodal pore arrangement for capacitive deionization, Journal of Materials Chemistry, 22 (2012) 23835-23844.
    [91] J. Lee, W. Bae, J. Choi, Electrode reactions and adsorption/desorption performance related to the applied potential in a capacitive deionization process, Desalination, 258 (2010) 159-163.
    [92] T. Ying, K. Yang, S. Yiacoumi, C. Tsouris, Electrosorption of ions from aqueous solutions by nanostructured carbon aerogel, Journal of Colloid and Interface Science, 250 (2002) 18-27.
    [93] C. Hou, C. Liang, S. Yiacoumi, S. Dai, C. Tsouris, Electrosorption capacitance of nanostructured carbon-based materials, Journal of Colloid and Interface Science, 302 (2006) 54-61.
    [94] K. Yang, S. Yiacoumi, C. Tsouris, Monte Carlo simulations of electrical double-layer formation in nanopores, Journal of Chemical Physics, 117 (2002) 8499-8507.
    [95] J. Huang, B. Sumpter, V. Meunier, A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes, Chemistry-a European Journal, 14 (2008) 6614-6626.
    [96] G. Feng, R. Qiao, J. Huang, B. Sumpter, V. Meunier, Ion Distribution in Electrified Micropores and Its Role in the Anomalous Enhancement of Capacitance, Acs Nano, 4 (2010) 2382-2390.
    [97] R. Zhao, P.M. Biesheuvel, H. Miedema, H. Bruning, A. van der Wal, Charge Efficiency: A Functional Tool to Probe the Double-Layer Structure Inside of Porous Electrodes and Application in the Modeling of Capacitive Deionization, Journal of Physical Chemistry Letters, 1 (2010) 205-210.
    [98] M. Bazant, K. Thornton, A. Ajdari, Diffuse-charge dynamics in electrochemical systems, Physical Review E, 70 (2004).
    [99] S. Huang, C. Fan, C. Hou, Electro-enhanced removal of copper ions from aqueous solutions by capacitive deionization, Journal of Hazardous Materials, 278 (2014) 8-15.
    [100] C. Huang, J. He, Electrosorptive removal of copper ions from wastewater by using ordered mesoporous carbon electrodes, Chemical Engineering Journal, 221 (2013) 469-475.
    [101] Z. Wang, L. Yue, Z. Liu, Z. Liu, Z. Hao, Functional graphene nanocomposite as an electrode for the capacitive removal of FeCl3 from water, Journal of Materials Chemistry, 22 (2012) 14101-14107.
    [102] Y. Wimalasiri, M. Mossad, L. Zou, Thermodynamics and kinetics of adsorption of ammonium ions by graphene laminate electrodes in capacitive deionization, Desalination, 357 (2015) 178-188.
    [103] M. Mossad, L. Zou, A study of the capacitive deionisation performance under various operational conditions, Journal of Hazardous Materials, 213 (2012) 491-497.
    [104] V. Gude, N. Nirmalakhandan, S. Deng, Renewable and sustainable approaches for desalination, Renewable & Sustainable Energy Reviews, 14 (2010) 2641-2654.
    [105] C. Fritzmann, J. Lowenberg, T. Wintgens, T. Melin, State-of-the-art of reverse osmosis desalination, Desalination, 216 (2007) 1-76.
    [106] D. Zhou, L. Zhu, Y. Fu, M. Zhu, L. Xue, Development of lower cost seawater desalination processes using nanofiltration technologies - A review, Desalination, 376 (2015) 109-116.
    [107] N. Akther, A. Sodiq, A. Giwa, S. Daer, H. Arafat, S. Hasan, Recent advancements in forward osmosis desalination: A review, Chemical Engineering Journal, 281 (2015) 502-522.
    [108] S. Burn, M. Hoang, D. Zarzo, F. Olewniak, E. Campos, B. Bolto, O. Barron, Desalination techniques - A review of the opportunities for desalination in agriculture, Desalination, 364 (2015) 2-16.
    [109] D. Cohen-Tanugi, J. Grossman, Nanoporous graphene as a reverse osmosis membrane: Recent insights from theory and simulation, Desalination, 366 (2015) 59-70.
    [110] S. Daer, J. Kharraz, A. Giwa, S. Hasan, Recent applications of nanomaterials in water desalination: A critical review and future opportunities, Desalination, 367 (2015) 37-48.
    [111] J. Dykstra, R. Zhao, P. Biesheuvel, A. van der Wal, Resistance identification and rational process design in Capacitive Deionization, Water Research, 88 (2016) 358-370.
    [112] S. Seo, H. Jeon, J. Lee, G. Kim, D. Park, H. Nojima, J. Lee, S. Moon, Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications, Water Research, 44 (2010) 2267-2275.
    [113] M. Mossad, W. Zhang, L. Zou, Using capacitive deionisation for inland brackish groundwater desalination in a remote location, Desalination, 308 (2013) 154-160.
    [114] Z. Huang, L. Lu, Z. Cai, Z. Ren, Individual and competitive removal of heavy metals using capacitive deionization, Journal of Hazardous Materials, 302 (2016) 323-331.
    [115] J. Choi, Fabrication of a carbon electrode using activated carbon powder and application to the capacitive deionization process, Separation and Purification Technology, 70 (2010) 362-366.
    [116] A. Mishra, S. Ramaprabhu, Functionalized graphene sheets for arsenic removal and desalination of sea water, Desalination, 282 (2011) 39-45.
    [117] L. Wang, M. Wang, Z. Huang, T. Cui, X. Gui, F. Kang, K. Wang, D. Wu, Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes, Journal of Materials Chemistry, 21 (2011) 18295-18299.
    [118] R. Kumar, S. Sen Gupta, S. Katiyar, V. Raman, S. Varigala, T. Pradeep, A. Sharma, Carbon aerogels through organo-inorganic co-assembly and their application in water desalination by capacitive deionization, Carbon, 99 (2016) 375-383.
    [119] C. Fan, S. Tseng, K. Li, C. Hou, Electro-removal of arsenic(III) and arsenic(V) from aqueous solutions by capacitive deionization, Journal of Hazardous Materials, 312 (2016) 208-215.
    [120] J. Farmer, S. Bahowick, J. Harrar, D. Fix, R. Martinelli, A. Vu, K. Carroll, Electrosorption of chromium ions on carbon aerogel electrodes as a means of remediating ground water, Energy & Fuels, 11 (1997) 337-347.
    [121] W. Tang, P. Kovalsky, B. Cao, D. He, T. Waite, Fluoride Removal from Brackish Groundwaters by Constant Current Capacitive Deionization (CDI), Environmental Science & Technology, 50 (2016) 10570-10579.
    [122] W. Tang, P. Kovalsky, D. He, T. Waite, Fluoride and nitrate removal from brackish groundwaters by batch-mode capacitive deionization, Water Research, 84 (2015) 342-349.
    [123] C. Gabelich, T. Tran, I. Suffet, Electrosorption of inorganic salts from aqueous solution using carbon aerogels, Environmental Science & Technology, 36 (2002) 3010-3019.
    [124] M. Mossad, L. Zou, Study of fouling and scaling in capacitive deionisation by using dissolved organic and inorganic salts, Journal of Hazardous Materials, 244 (2013) 387-393.
    [125] Z.H. Wen, J.H. Li, Hierarchically structured carbon nanocomposites as electrode materials for electrochemical energy storage, conversion and biosensor systems, Journal of Materials Chemistry, 19 (2009) 8707-8713.
    [126] W. Wei, C. Yu, Q. Zhao, X. Qian, G. Li, Y. Wan, Synergy effect in photodegradation of contaminants from water using ordered mesoporous carbon-based titania catalyst, Applied Catalysis B-Environmental, 146 (2014) 151-161.
    [127] P. Chang, C. Huang, R. Doong, Ordered mesoporous carbon-TiO2 materials for improved electrochemical performance of lithium ion battery, Carbon, 50 (2012) 4259-4268.
    [128] T. Chou, R. Doong, C. Hu, B. Zhang, D. Su, Hierarchically Porous Carbon with Manganese Oxides as Highly Efficient Electrode for Asymmetric Supercapacitors, Chemsuschem, 7 (2014) 841-847.
    [129] Z. Guo, D. Zhou, X. Dong, Z. Qiu, Y. Wang, Y. Xia, Ordered Hierarchical Mesoporous/Macroporous Carbon: A High-Performance Catalyst for Rechargeable Li-O-2 Batteries, Advanced Materials, 25 (2013) 5668-+.
    [130] R.L. Liu, Y.F. Shi, Y. Wan, Y. Meng, F.Q. Zhang, D. Gu, Z.X. Chen, B. Tu, D.Y. Zhao, Triconstituent Co-assembly to ordered mesostructured polymer-silica and carbon-silica nanocomposites and large-pore mesoporous carbons with high surface areas, Journal of the American Chemical Society, 128 (2006) 11652-11662.
    [131] R. Liu, Y. Ren, Y. Shi, F. Zhang, L. Zhang, B. Tu, D. Zhao, Controlled synthesis of ordered mesoporous C-TiO2 nanocomposites with crystalline titania frameworks from organic-inorganic-amphiphilic coassembly, Chemistry of Materials, 20 (2008) 1140-1146.
    [132] Y. Meng, D. Gu, F.Q. Zhang, Y.F. Shi, H.F. Yang, Z. Li, C.Z. Yu, B. Tu, D.Y. Zhao, Ordered mesoporous polymers and homologous carbon frameworks: Amphiphilic surfactant templating and direct transformation, Angewandte Chemie-International Edition, 44 (2005) 7053-7059.
    [133] H. Liu, X. Wang, W. Cui, Y. Dou, D. Zhao, Y. Xia, Highly ordered mesoporous carbon nanofiber arrays from a crab shell biological template and its application in supercapacitors and fuel cells, Journal of Materials Chemistry, 20 (2010) 4223-4230.
    [134] Z. Peng, D. Zhang, L. Shi, T. Yan, High performance ordered mesoporous carbon/carbon nanotube composite electrodes for capacitive deionization, Journal of Materials Chemistry, 22 (2012) 6603-6612.
    [135] W.L. Chou, L.C. Cheng, J.L. Hu, C.P. Chang, C.T. Wang, DESALINATION BY ELECTROCHEMICALLY ENHANCED ADSORPTION USING ACTIVATED CARBON FIBER CLOTH ELECTRODES, Fresenius Environmental Bulletin, 22 (2013) 117-122.
    [136] Y.S. Chou, J.W. Stevenson, J.P. Choi, Long-term evaluation of solid oxide fuel cell candidate materials in a 3-cell generic short stack fixture, part I: Test fixture, sealing, and electrochemical performance, Journal of Power Sources, 255 (2014) 1-8.
    [137] F.J. Li, M. Morris, K.Y. Chan, Electrochemical capacitance and ionic transport in the mesoporous shell of a hierarchical porous core-shell carbon structure, Journal of Materials Chemistry, 21 (2011) 8880-8886.
    [138] F. Xu, R.J. Cai, Q.C. Zeng, C. Zou, D.C. Wu, F. Li, X.E. Lu, Y.R. Liang, R.W. Fu, Fast ion transport and high capacitance of polystyrene-based hierarchical porous carbon electrode material for supercapacitors, Journal of Materials Chemistry, 21 (2011) 1970-1976.
    [139] C.M. Chen, Q. Zhang, X.C. Zhao, B.S. Zhang, Q.Q. Kong, M.G. Yang, Q.H. Yang, M.Z. Wang, Y.G. Yang, R. Schlogl, D.S. Su, Hierarchically aminated graphene honeycombs for electrochemical capacitive energy storage, Journal of Materials Chemistry, 22 (2012) 14076-14084.
    [140] Y. Li, J. Ding, Z. Luan, Z. Di, Y. Zhu, C. Xu, D. Wu, B. Wei, Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes, Carbon, 41 (2003) 2787-2792.
    [141] Y.H. Liu, J.S. Xue, T. Zheng, J.R. Dahn, Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins, Carbon, 34 (1996) 193-200.
    [142] R. Kotz, M. Carlen, Principles and applications of electrochemical capacitors, Electrochimica Acta, 45 (2000) 2483-2498.
    [143] J. Lang, X. Yan, W. Liu, R. Wang, Q. Xue, Influence of nitric acid modification of ordered mesoporous carbon materials on their capacitive performances in different aqueous electrolytes, Journal of Power Sources, 204 (2012) 220-229.
    [144] C. Weidenthaler, A.H. Lu, W. Schmidt, F. Schuth, X-ray photoelectron spectroscopic studies of PAN-based ordered mesoporous carbons (OMC), Microporous and Mesoporous Materials, 88 (2006) 238-243.
    [145] C.H. Hou, C.D. Liang, S. Yiacoumi, S. Dai, C. Tsouris, Electrosorption capacitance of nanostructured carbon-based materials, Journal of Colloid and Interface Science, 302 (2006) 54-61.
    [146] M. Lazaro, L. Calvillo, E. Bordeje, R. Moliner, R. Juan, C. Ruiz, Functionalization of ordered mesoporous carbons synthesized with SBA-15 silica as template, Microporous and Mesoporous Materials, 103 (2007) 158-165.
    [147] J.C. Calderon, N. Mahata, M.F.R. Pereira, J.L. Figueiredo, V.R. Fernandes, C.M. Rangel, L. Calvillo, M.J. Lazaro, E. Pastor, Pt-Ru catalysts supported on carbon xerogels for PEM fuel cells, International Journal of Hydrogen Energy, 37 (2012) 7200-7211.
    [148] X.M. Liu, Y.L. Wang, L.A. Zhan, W.M. Qiao, X.Y. Liang, L.C. Ling, Effect of oxygen-containing functional groups on the impedance behavior of activated carbon-based electric double-layer capacitors, Journal of Solid State Electrochemistry, 15 (2011) 413-419.
    [149] Y.R. Nian, H.S. Teng, Nitric acid modification of activated carbon electrodes for improvement of electrochemical capacitance, Journal of the Electrochemical Society, 149 (2002) A1008-A1014.
    [150] A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors, Journal of Power Sources, 157 (2006) 11-27.
    [151] H. Oda, A. Yamashita, S. Minoura, M. Okamoto, T. Morimoto, Modification of the oxygen-containing functional group on activated carbon fiber in electrodes of an electric double-layer capacitor, Journal of Power Sources, 158 (2006) 1510-1516.
    [152] Y. Gao, L.K. Pan, H.B. Li, Y.P. Zhang, Z.J. Zhang, Y.W. Chen, Z. Sun, Electrosorption behavior of cations with carbon nanotubes and carbon nanofibres composite film electrodes, Thin Solid Films, 517 (2009) 1616-1619.
    [153] M. Mossad, L.D. Zou, A study of the capacitive deionisation performance under various operational conditions, Journal of Hazardous Materials, 213 (2012) 491-497.
    [154] Z. Peng, D.S. Zhang, T.T. Yan, J.P. Zhang, L.Y. Shi, Three-dimensional micro/mesoporous carbon composites with carbon nanotube networks for capacitive deionization, Applied Surface Science, 282 (2013) 965-973.
    [155] J. Yang, L.D. Zou, Recycle of calcium waste into mesoporous carbons as sustainable electrode materials for capacitive deionization, Microporous and Mesoporous Materials, 183 (2014) 91-98.
    [156] J. Yang, L. Zou, H. Song, Z. Hao, Development of novel MnO2/nanoporous carbon composite electrodes in capacitive deionization technology, Desalination, 276 (2011) 199-206.
    [157] C.H. Hou, C.Y. Huang, A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization, Desalination, 314 (2013) 124-129.
    [158] K. Leonard, J. Genthe, J. Sanfilippo, W. Zeltner, M. Anderson, Synthesis and characterization of asymmetric electrochemical capacitive deionization materials using nanoporous silicon dioxide and magnesium doped aluminum oxide, Electrochimica Acta, 54 (2009) 5286-5291.
    [159] S. Porada, M. Bryjak, A. van der Wal, P. Biesheuvel, Effect of electrode thickness variation on operation of capacitive deionization, Electrochimica Acta, 75 (2012) 148-156.
    [160] P. Cai, C. Su, W. Chang, F. Chang, C. Peng, I. Sun, Y. Wei, C. Jou, H. Wang, Capacitive deionization of seawater effected by nano Ag and Ag@C on graphene, Marine Pollution Bulletin, 85 (2014) 733-737.
    [161] J. Wouters, J. Lado, M. Tejedor-Tejedor, M. Anderson, Low Surface Area Carbon Fiber Electrodes Coated with Nanoporous Thin-Films of gamma-Al2O3 and SiO2: Relationship between Coating Conditions, Microstructure and Double Layer Capacitance, Journal of the Electrochemical Society, 159 (2012) A1374-A1382.
    [162] T. Chou, C. Huang, R. Doong, C. Hu, Architectural design of hierarchically ordered porous carbons for high-rate electrochemical capacitors, Journal of Materials Chemistry a, 1 (2013) 2886-2895.
    [163] C. Huang, Q. Zhang, T. Chou, C. Chen, D. Su, R. Doong, Three-Dimensional Hierarchically Ordered Porous Carbons with Partially Graphitic Nanostructures for Electrochemical Capacitive Energy Storage, CHEMSUSCHEM, 5 (2012) 563-571.
    [164] C. Hou, N. Liu, H. Hsu, W. Den, Development of multi-walled carbon nanotube/poly(vinyl alcohol) composite as electrode for capacitive deionization, Separation and Purification Technology, 130 (2014) 7-14.
    [165] I. Villar, D. Suarez-De la Calle, Z. Gonzalez, M. Granda, C. Blanco, R. Menendez, R. Santamaria, Carbon materials as electrodes for electrosorption of NaCl in aqueous solutions, Adsorption-Journal of the International Adsorption Society, 17 (2011) 467-471.
    [166] P. Liu, L. Chung, C. Ho, H. Shao, T. Liang, M. Chang, C. Ma, R. Horng, Comparative insight into the capacitive deionization behavior of the activated carbon electrodes by two electrochemical techniques, Desalination, 379 (2016) 34-41.
    [167] S. Dutta, S. Huang, C. Chen, J. Chen, Z. Alothman, Y. Yamauchi, C. Hou, K. Wu, Cellulose Framework Directed Construction of Hierarchically Porous Carbons Offering High-Performance Capacitive Deionization of Brackish Water, Acs Sustainable Chemistry & Engineering, 4 (2016) 1885-1893.
    [168] X. Gao, A. Omosebi, J. Landon, K. Liu, Enhanced Salt Removal in an Inverted Capacitive Deionization Cell Using Amine Modified Microporous Carbon Cathodes, Environmental Science & Technology, 49 (2015) 10920-10926.
    [169] N. Pugazhenthiran, S. Gupta, A. Prabhath, M. Manikandan, J. Swathy, V. Raman, T. Pradeep, Cellulose Derived Graphenic Fibers for Capacitive Desalination of Brackish Water, Acs Applied Materials & Interfaces, 7 (2015) 20156-20163.
    [170] X. Xu, Y. Liu, M. Wang, C. Zhu, T. Lu, R. Zhao, L. Pan, Hierarchical hybrids with microporous carbon spheres decorated three-dimensional graphene frameworks for capacitive applications in supercapacitor and deionization, Electrochimica Acta, 193 (2016) 88-95.
    [171] Y. Wang, L. Zhang, Y. Wu, S. Xu, J. Wang, Polypyrrole/carbon nanotube composites as cathode material for performance enhancing of capacitive deionization technology, Desalination, 354 (2014) 62-67.
    [172] X. Xu, L. Pan, Y. Liu, T. Lu, Z. Sun, D. Chua, Facile synthesis of novel graphene sponge for high performance capacitive deionization, Scientific Reports, 5 (2015).
    [173] Z. Yang, L. Jin, G. Lu, Q. Xiao, Y. Zhang, L. Jing, X. Zhang, Y. Yan, K. Sun, Sponge-Templated Preparation of High Surface Area Graphene with Ultrahigh Capacitive Deionization Performance, Advanced Functional Materials, 24 (2014) 3917-3925.
    [174] H. Li, Y. Ma, R. Niu, Improved capacitive deionization performance by coupling TiO2 nanoparticles with carbon nanotubes, Separation and Purification Technology, 171 (2016) 93-100.
    [175] Y. Liu, H. Hsi, K. Li, C. Hou, Electrodeposited Manganese Dioxide/Activated Carbon Composite As a High-Performance Electrode Material for Capacitive Deionization, ACS Sustainable Chemistry & Engineering, 4 (2016) 4762-4770.
    [176] V. Coman, B. Robotin, P. Ilea, Nickel recovery/removal from industrial wastes: A review, Resources Conservation and Recycling, 73 (2013) 229-238.
    [177] Y. Onundi, A. Mamun, M. Al Khatib, M. Al Saadi, A. Suleyman, Heavy metals removal from synthetic wastewater by a novel nano-size composite adsorbent, International Journal of Environmental Science and Technology, 8 (2011) 799-806.
    [178] S. Rengaraj, K. Yeon, S. Moon, Removal of nickel from water and synthetic nuclear power plant coolant water by ion exchange resins, Journal of Radioanalytical and Nuclear Chemistry, 253 (2002) 241-245.
    [179] K. Yeon, J. Song, S. Moon, A study on stack configuration of continuous electrodeionization for removal of heavy metal ions from the primary coolant of a nuclear power plant, Water Research, 38 (2004) 1911-1921.
    [180] A. Papadopoulos, D. Fatta, K. Parperis, A. Mentzis, K. Haralambous, M. Loizidou, Nickel uptake from a wastewater stream produced in a metal finishing industry by combination of ion-exchange and precipitation methods, Separation and Purification Technology, 39 (2004) 181-188.
    [181] Z. Murthy, L. Chaudhari, Rejection behavior of nickel ions from synthetic wastewater containing Na2SO4, NiSO4, MgCl2 and CaCl2 salts by nanofiltration and characterization of the membrane, Desalination, 247 (2009) 610-622.
    [182] C. Chen, J. Hu, D. Shao, J. Li, X. Wang, Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II), Journal of Hazardous Materials, 164 (2009) 923-928.
    [183] Y. Dzyazko, Purification of a diluted solution containing nickel using electrodeionization, Desalination, 198 (2006) 47-55.
    [184] K. Dermentzis, Removal of nickel from electroplating rinse waters using electrostatic shielding electrodialysis/electrodeionization, Journal of Hazardous Materials, 173 (2010) 647-652.
    [185] Industrial development bureau of Ministry of Economic Affairs, Taiwan (R.O.C), The technical handbook of recycling application to printed circuit board, (2009) 44.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE