研究生: |
陳緯恩 Chen, Wei-En |
---|---|
論文名稱: |
電漿子奈米圓孔陣列與Rhodamine 6G染料分子之交互作用實驗研究 Optical Study of the Interaction between Plasmonic Nanohole Array and Rhodamine 6G Dye Molecules |
指導教授: |
果尚志
Gwo, Shangjr |
口試委員: |
安惠榮
Ahn, Hyeyoung 張玉明 Chang, Yu-Ming |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2019 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 強耦合 、金屬奈米圓孔陣列 、表面晶格共振 、耦合震盪模型 |
外文關鍵詞: | strong coupling, metallic nanopore array, surface lattice resonance, coupled oscillation model |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾十年來,光與物質的交互作用十分熱門,像是雷射、表面增強拉曼和強光物質交互作用等。其中強光物質交互作用更是各界更感興趣的事,而強耦合現象並不是在光與物質交互作用中才出現,從雙彈簧震盪、耦合雙擺到強光物質作用都是所謂的強耦合現象。在達成光與物質的強耦合後,又可以朝玻色愛因斯坦凝聚、極化子雷射等有趣的現象來做研究,這更令我們感興趣,也是本篇論文會誕生的原因。
本論文是在研究金屬奈米圓孔陣列的表面晶格震盪模態與激子染料Rhodamine 6G(Rh6G)的激子模態的強耦合現象。本文的實驗分成兩個部分,第一部分為金屬奈米圓孔陣列的週期、占空比與深度對於表面晶格共振模態的影響;第二部分為Rh6G濃度變化與耦合強度的關係。
第一部分的結果分為三個,第一個,在占空比與深度固定的條件下,周期越大共振位置會紅移、Q-factor會固定;第二個,在週期與深度固定的情況下,占空比越大共振位置會紅移,Q-factor會變小;第三個,在週期和占空比固定,深度越深共振位置微微紅移,Q-factor會微微變小。第二部分的結果為耦合強度與Rh6G濃度平方根成線性關係,與理論預測的一樣。最大的分裂距離為237 meV。
最後是在討論使用三階耦合震盪模型來分析本論文的實驗數據,發現耦合強度g1和g2一樣隨著濃度增加而增強,且在濃度為15 mM時觀測到等效的Rabi Splitting竟然高達433 meV,是非常值得深入研究的主題。
In recent decade , the strong coupling between the light and the matter is popular in the world . Strong coupling is a general phenomenon from classical to quantum . For example : two coupled strings , coupled pendulums and strong light-matter interaction . When we reach the strong coupling regime , we can research more interesting effect like Bose-Einstein condensation and polariton laser.
In this thesis , we research the strong coupling between the plasmonic nanohole array and Rhodamine 6G (Rh6G) . There are two parts in my result . One part is the influence including the pitch , the filling factor and the depth for the SLR mode of plasmonic nanohole array and introduce the properties of rectangular array. The other is the relation between the concentration of Rh6G and the coupling strength . The coupling strength is proportion to the square root of Rh6G’s concentration . The maxima of the splitting energy is 237 meV and the effective Rabi Splitting is 433 meV at 15 mM for our system .
[1] William L. Barnes et al.,Surface plasmon subwavelength optic , Nature , 424 , 6950 (2003).
[2] Rui Guo et al.,Dispersions and light-matter interactions in plasmonic lattices of different geometries ,Aalto University publication series 166 (2018).
[3] Parinda Vasa et al.,Strong Light−Matter Interaction in Quantum Emitter/Metal Hybrid Nanostructures , ACS Photonics , 5 , 2−23 (2018).
[4] Xuexian Chen et al.,Resonance coupling in hybrid gold nanohole–monolayer WS2 nanostructures , Applied materialtoday , 15 , 145-152 (2019).
[5] Dang Y. Lei et al.,Geometry Dependence of Surface Plasmon Polariton Lifetimes in Nanohole Arrays , ACS nano , 4 , 1 (2010).
[6] Sergey I. Bozhevolnyi et al.,Quantum Plasmonics,Springer Series in Solid-State Sciences Volume 185 (2017).
[7] Florian M.Zehentbauer et al.,Fluorescence spectroscopy of Rhodamine 6G: Concentration and solvent effects , Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy , 121 , 147-151(2014).
[8] https en.wikipedia.orgwikiRhodamine_6G , 7/8/2019 at 8 : 02.
[9] C. ON et al.,Effect of molecular concentration on spectroscopic properties of poly(methyl methacrylate) thin films doped with rhodamine 6G dye, OPTICAL MATERIALS EXPRESS , 7 , 12 (2017).
[10] 2017 Thermo Fisher Scientific Inc. All Rights Reserved
[11] Jiani Huang et al.,Real-Time Tunable Strong Coupling: From Individual Nanocavities to Metasurfaces , ACS Photonics , 4 , 838-843 (2019).
[12] P Törmä et al.,Strong coupling between surface plasmon polaritons and emitters: a review , Rep. Prog. Phys. , 78 , 013901 (2015).
[13] Laura Christine Tropf et al.,STRONG LIGHT-MATTER COUPLING IN ORGANIC MICROCAVITIES:INVESTIGATING THE FUNDAMENTAL PRINCIPLES OF STRONG COUPLING IN STRONGLY DISORDERED MATERIALS EXPERIMENTALLY , the University of St Andrews (2019).
[14] M.P.van Exter et al.,Surfaceplasmondispersioninmetalhole arraylasers , OPTICS EXPRESS , 21 , 22(2013).
[15] Mohammad Ramezani et al.,Dispersion Anisotropy of Plasmon−Exciton−Polaritons in Lattices of Metallic Nanoparticles , ACS Photonics , 5 , 233−239 (2018).
[16] Mikhail I. Vasilevskiy et al., Exciton-polaritons in 2D dichalcogenide layers placed in a planar microcavity: tuneable interaction between two Bose-Einstein condensates , PHYSICAL REVIEW B , 92 , 245435 (2015)
[17] Hui Deng et al., Exciton-polariton Bose-Einstein condensation , Rev. Mod. Phys , 82 , 2 (2010).
[18] 2019 Elsevier B.V. or its licensors or contributors. ScienceDirect ® is a registered trademark of Elsevier B.V
[19] Matthieu Weber et al.,Boron Nitride as a Novel Support for Highly Stable Palladium Nanocatalysts by Atomic Layer Deposition , Nanomaterials , 8 , 849 (2018).