研究生: |
羅宜華 |
---|---|
論文名稱: |
銅離子對金魚藻光系統活性與形態的影響 The influences of cooper ions on photosystem activity and morphology of Ceratophyllum demersum L. |
指導教授: | 徐邦達 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 金魚藻 、銅離子 |
外文關鍵詞: | Ceratophyllum demersum, cooper ions |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有許多的水生植物具有吸收水中污染物質,並提供溶氧的能力。金魚藻( Ceratophyllum demersum L. )為一般常見的沉水草本植物,生長在水流緩慢的池塘、河溝或湖泊等環境中,能有效吸收工廠排放出的重金屬離子,並且可以用來評估特定區域的有毒重金屬含量,扮演指標生物的角色。
為了能迅速了解銅離子對金魚藻的影響,我們利用金魚藻的葉綠素螢光值來當作生理變化的指標,並以石蠟切片的方式,在顯微鏡下觀察金魚藻組織變化情形,並以感應式質譜儀觀察銅離子在植物體內分佈的狀況。我們發現在當氯化銅溶液升至100 μM時,金魚藻的光合作用效率會隨著在時間增加而降低,且在10小時後發生落葉。在經由100 μM 氯化銅處理24小時後,金魚藻在莖及葉的銅累積量分別為(662 μg/g)、( 99 μg/g)。金魚藻的電導率隨著濃度和持續時間增加而增加。在結構方面發現隨著氯化銅處理時間增加細胞的間隙變大,在接近落葉的時間點葉與莖的節點細胞出現變形內縮。並且發現氯化鈣可延緩金魚藻落葉的時間。
Abstract:
There are many aquatic plants that absorb heavy metals, and provide oxygen. Ceratophyllum demersum L. is a very common submerged aquatic plant that grows in the ponds, ditches and lakes. It can efficiently absorb surplus heavy metals released by factories and is used for the assessment of toxic metal contamination in special area.
In order to understand the influence of copper ions on Ceratophyllum demersum L the chlorophyll fluorescence of the plant was used an indication of physiological status, parafilm slicing followed by microscopic observation was used to monitor the damage of the plants at tissue level and mass spectroscopy was used to find out the distribution of copper ions it plant’s body. We found that the photosynthetic efficiency of Ceratophyllum demersum L declined with increasing copper concentration to 100μM and leaf detachment after 10 hours . About 662μg/g copper were accumulated in the leaf and 99μg/g in the stem of Ceratophyllum demersum L ,after exposure to 100μM copper for 24 hours . Electric conductivity was decreasing. Morphological symptom of stem was observed spaces between cell wall and diminished cell at leaf detachment area. Ca could delay the leaf separate for 2hours.
參考文獻:
趙大衛 (2006), 貝類生物指標在環境變遷及污染評估上的應用,環境教育季刊. 42:67 – 76
黃惠如 康健雜誌 39期
黃朝慶與李松柏。 (1999) 台灣珍稀水生植物。清水鎮牛罵頭文化協進會,台中縣。
葉育材 (1982) 光合作用:植物生產力的生理基礎 國立編譯館
林金和 (2002) 生物切片技術 國立中興大學
感應耦合電漿質譜儀 2004 環保署 0930010472號公告
吳敬謙 (2003) Waste paper cellulose hydrolysis by hanging type immobilized cellulase reactor and it’s carbohydrate products analysis 中原大學
曾阿妍,顏昌宙,金相燦,王聖瑞,馬小凡,金魚藻對銅離子的生物吸附特征。中國環境科學。2005. 25(6) 691 – 694
Bliger W, Schreiber U, Bock M, 1995. Determination of quantum efficiency of photo system Ⅱ and of non-photochemical quenching of chlorophyll fluorescence in the field. Oecologia,102, 425 - 432
Devi, R. M. and Hutchinson, T. C.: 1980, The response of root acid phospatease activity to heavy metal stress in tolerant and non – tolerant clones of two grass species, New phytol. 86, 359 – 364
Devi, S. R. and Prasad M. N. V. (1998) Copper toxicity in Ceratophyllum demersum L. (Coontail), a free floating macrophyte: Response of antioxidant enzymes and antioxidants. Plant Sci. 138: 157-165.
Kumar, G. P., M. Prasad, N. V., 2004. Cadmium toxicity to Ceratophyllum demersum L.: Morphological symptoms, Membrane, and ion leakage:Bull Environ. Contam. Toxicol., 72, 1038 – 1045
Jie Liu and Zhiting Xiong, 2005, Differences accumulation and physiological response to copper stress in three populations of ELSHOLTZIA HAICHOWENSIS S.
Johnson, D., Kershaw, L., Mackinnon, A., Pojar, J., 1995. Plants of Western Boreal Forest and Aspen Parkland. Lone Pine publishing, Vancouver, BC.
Kupper, H., Kupper, F. and Spiller, M.1996, Environmental relevance of heavy metals substituted chlorophylls using the example of water plant, J. Exp. Bot. 47, 259 – 266
Lazar, D. 1999, Chlorophyll a fluorescence induction. Biochim Biophys.Acta 1412, 1 – 28
Meyer, J.S.1999, A mechanistic explanation in intact tissues using N,N–dimethylformamide. Plant Physiol. 65, 478 –479
R. R. Brooks, S. Shaw and A. Asensi Marfil. 1981, The chemical form and physiological function of nickel in some Iberian Alyssum species. – Physiol. Plant.51, 160 – 170
Nishizono, H. 1987, The role of the root cell wall in the heavy metal tolerance of Athyrium yokiscense’, Plant and Soil. 101,15 – 20
O. Keskinkan , M.Z.L. Goksu ,M. Basibuyuk , C.F. Forster. 2004 , Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum L.), Bioresource Technology. 92 197-200
Peng H. R.,Yang X. E.,Tian S. K.2005, Accumulation and ultrastructural distribution of copper in Elsholtzia splendens, J Zhejiang Univ SCI. 6B(5), 311 – 318
Peng Wang, Wei Duan, Atsushi Takabayashi, Tsuyoshi Endo, Toshiharu Shikanai,Ji-Yu Ye, and Hualing Mi.2006, Plant Physiology. 141,465–474,
Richard, K. D., Schott, E, J., Sharma, Y, K., Davis, K. R. and Gardner, R. c.1998, Aluminum induces oxidative stress genes in arabidopsis thaliana, Plant Physiol. 116, 409 – 418
Rohacek, K. and M. Bartak. 1999, Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. Photosynthetica. 37: 595 – 622
Seema M., S. Srivastava., R.D. Tripathi., R. Kumar., C.S. Seth., D.K. Gupta. 2006, Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation, Chemosphere. XXX-XXX
Scott,J.Markich, Angus R. King, Scott P. Wilson., (2006) Non -effect of water hardness on the accumulation and toxicity of copper in a freshwater macrophyte (Ceratophyllum demersum L.): How useful are hardness-modified copper guidelines for protecting freshwater biota? Chemosphere. 65, 1791 – 1800
van Mieghem, F., K. Brettel., B. Hillmann., A. Kamlowski., A. W. Rutherford. And E. Schlodder. 1995, Charge recombination reactions in photo system Ⅱ.1.Yields, recombination pathways, and kinetics of the primary pair. Biochemistry. 34, 4786 - 4813
Weckx, J. E. J. and Clijsters, H. M. M. 1996, Oxidative damage and defedse mechanism in primary leaves of Phaseolus vulgaris as a result of root assimilation of toxicity amounts of copper, Physiol. Plant 96, 506 – 512