簡易檢索 / 詳目顯示

研究生: 林崇致
Lin, Chunchi
論文名稱: 近紅外光有機發光染料耦合至矽環形 共振腔與矽光子晶體共振腔之設計與特性
Design and characterization of near-infrared organic dyes coupling to silicon ring microcavity and silicon photonic crystal nanocavity
指導教授: 李明昌
Lee, Ming-Chang
口試委員: 那允中
洪毓玨
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 55
中文關鍵詞: 開槽波導環形共振腔光子晶體共振腔垂直出光
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來隨著科技的進步,半導體製程逐漸來到了材料的物理極限,為了繼續維持摩爾定律所預估的成長,積體光學的發展越來越顯重要,而共振腔更是積體光學所不可或缺的元件。此篇將使用近紅外線有機發光染料IR-26,量測並設計對應其發光波段1310奈米之共振腔結構;將先量測一開槽環形結構之微米共振腔,評估其作為共振腔之品質因子(Quality factor)與將其與IR-26結合作為發光元件的可行性,並提出此共振腔結構之優化方式與設計其量測系統。接著以開槽環形共振腔之設計作為參考,使用有限時域差分法(Finite-difference time-domain, FDTD)進行模擬,在絕緣層覆矽(SOI)基板上設計出一個共振波段位於1310奈米的二維圓孔光子晶體平板奈米共振腔(2-D Photonic crystal slab nanocavity),藉由調控共振腔周圍的圓孔減少模態不匹配所造成的散射損耗藉此增加品質因子,並於共振腔中心加入一開槽結構減少其模態體積(Mode volume),使其擁有良好的Purcell factor,提高共振腔內光與物質的交互作用效率;再於共振腔周圍中加入兩倍晶格常數(Lattice constant)之週期性結構變化,改變共振腔的遠場放光輪廓,達成垂直出光增加其放光效率,同時可增加外部光源垂直入射耦合之效率,此共振腔將可用於發光二極體或是雷射等放光系統。


    In recently years, the semiconductor process technology have a substantial advances; however, it still suffer the physical limit of material. For reach the Moore’s law, the advances of integrated optics is the key subject. The resonant cavities are the essential elements in the integrated optics. Here we select the near-infrared organic laser dye IR-26 to be the gain medium, then measure and design the resonant cavity which its resonance wavelength at 1310 nm. The characteristic of slot ring microcavity have been measured to assess the probability of combination with IR-26. Then we optimize the slot ring structure and design the better measurement to collect the data. Based on the slot ring mucrocavity’s result, we further design the photonic crystal nanocavity. Here we utilize the finite-difference time-domain to simulate the 2-D photonic crystal slab nanocavity on the silicon on insulator, and the design resonant wavelength at 1310 nm. By adjusting the air hole around the cavity and adding a slot in cavity center, we optimize the cavity’s quality factor and mode volume, enhance its light-matter interaction. For increasing the vertical emission efficiency, the extra cyclical changes be added on the structure around the cavity to transform the far-field profile. It’s also mean the vertical coupling efficiency be increased too. With the IR-26, the cavity can be a LED or laser.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 第一章 緒論 1 1.1 研究動機 2 1.2 有機光學染料IR-26 3 第二章 開槽環形共振腔 4 2.1 量測方式 7 2.2 量測結果 9 2.3 模擬結果比較 14 2.4 耦合器 15 2.5 結構改善 20 2.6 Pump-Probe Measurement 23 2.7 Purcell effect 27 第三章 光子晶體共振腔 29 3.1 光子晶體結構參數 31 3.2 Mode volume and Q-factor optimization 35 3.3 垂直出光優化 39 3.4 設計流程 42 3.5 Rate Equation 44 3.6 Photobleaching 49 第四章 總結與未來規劃 51 參考文獻 52

    [1] Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, G. Roelkens, I. Sagnes, R. Raj, and F. Raineri, “Hybrid III-V semiconductor/silicon nanolaser” Optics Express Vol. 19, Issue 10 (2011)
    [2] Olesya Bondarenko, Cheng-Yi Fang, Felipe Vallini, Joseph S. T. Smalley, and Yeshaiahu Fainman, “Extremely compact hybrid III-V/SOI lasers: design and fabrication approaches” Optics Express Vol. 23, Issue 3 (2015)
    [3] Kai-Yuan Cheng, Rebecca Anthony, Uwe R. Kortshagen, and Russell J. Holmes, “High-Efficiency Silicon Nanocrystal Light-Emitting Devices” Nano Lett., 2011, 11 (5)
    [4] A. Marconi, A. Tengattini, A. Anopehenko, “Power efficiency of silicon nanocrystal based LED in pulsed regime” IEEE, 14-16 Sept. 2011
    [5] W. Kranitzky, B.Kopainsky, W. Kaiser, K.H. Drexhage and G.A. Reynolds, “A New Infrared Laser Dye of Superior Photostability Tunable to 1.24μm with Picosecond Excitation” Optics Commun., 36(2), 149 (1981)
    [6] B.Kopainsky, P. Qiu, W. Kaiser, B. Sens and K.H. Drexhage, “Lifetime, Photostability, and Chemical Structure of IR Heptomethine Cyanine Dyes Absorbing Beyond 1μm,” Appl. Phys. B, 29, 15 (1982)
    [7] A. Seilmeier, W. Kaiser, B. Sens and K.H. Drexhage, “Tunable Picosecond Pulses Around 1.3μm Generated by a Synchronously Pumped Infrared Dye Laser” Optics Lett., 8(4), 205 (1983)
    [8] Vilson R. Almeida, Qianfan Xu, Carlos A. Barrios, and Michal Lipson, “Guiding and confining light in void nanostructure” Optics Lett., 29(11), 1209 (2004)
    [9] Qianfan Xu, Vilson R. Almeida, Roberto R. Panepucci, and Michal Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material” Optics Lett., 29(14), 1626 (2004)
    [10] Tom Baehr-Jones, Michael Hochberg, Chris Walker, and Axel Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides” Appl. Phys. L, 86, 081101 (2005);
    [11] Francesco Dell’Olio and Vittorio M. N. Passaro, “Optical sensing by optimized silicon slot waveguides” Optics Express, Vol. 15, No. 8 (2007)
    [12] J. Schrauwen, J. van Lysebettens, T. Claes, K. de Vos, P. Bienstman, D. van Thourhout, R. Baets, "Focused-ion-beam fabrication of slots in silicon waveguides and ring resonators," IEEE Photon. Technol. Lett. 20, 2004-2006 (2008)
    [13] T. Claes , J. G. Molera , K. De Vos , E. Schacht , R. Baets and P. Bienstman "Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator", IEEE Photon. J., vol. 1, no. 3, pp.197 -204 2009
    [14] Zhechao Wang, Ning Zhu, Yongbo Tang, Lech Wosinski, Daoxin Dai, and Sailing He, “Ultracompact low-loss coupler between strip and slot waveguides” Optics Letters Vol. 34, Issue 10, pp. 1498-1500 (2009)
    [15] M. Borselli, T. J. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13, 1515-1530 (2005).
    [16 ] C. A. Barrios, B. Sanchez, K. B. Gylfason, A. Griol, H. Sohlstrom, M. Holgado, and R. Casquel, “Demonstration of slot-waveguide structures on silicon nitride/silicon oxide platform,” Opt. Express 15, 6846–6856 (2007).
    [17] L. W. Luo, G. S. Wiederhecker, J. Cardenas, C. Poitras, and M. Lipson, “High quality factor etchless silicon photonic ring resonators,” Opt. Express 19, 6284–6289 (2011).
    [18] Lumerical Solutions, Inc. FDTD Solutions.
    [19] P. A. Anderson, B. S. Schmidt, and M. Lipson, “High confinement in silicon slot waveguides with sharp bends,” Opt. Express 14, 9197-9202 (2006).
    [20] D. P. Benfey, D. C. Brown, S. J. Davis, L. G. Piper, and R. F. Foutter, “Diode-pumped dye laser analysis and design,” Appl. Opt. 31, 7034–7041 (1992).
    [21] E. M. Purcell, Phys. Rev. 69, 681 (1946)
    [22] R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, "Smallest possible electromagnetic mode volume in a dielectric cavity," Optoelectronics, IEE Proceedings - 145, 391-397 (1998).
    [23] Jacob T. Robinson, Christina Manolatou, Long Chen, and Michal Lipson, “Ultrasmall Mode Volumes in Dielectric Optical Microcavities” Phys. Rev. Lett. 95, 14390 (2005)
    [24] Eli Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics” Phys. Rev. Lett. 58, 2059 (1987)
    [25] Sajeev John, “Strong localization of photons in certain disordered dielectric superlattices” Phys. Rev. Lett. 58, 2486 (1987)
    [26] E Yablonovitch, “Photonic band-gap crystals” J. Opt. Soc. Am. B, Vol. 10, No. 2 (1993)
    [27] C. Sheppard, “Approximate calculation of the reflection coefficient from a stratified medium” Pure Appl. Opt.: J. Eur. Opt. Soc. Part A, 4 (1995)
    [28] Merav Muallem , Alex Palatnik , Gilbert D. Nessim , and Yaakov R. Tischler. “Room Temperature Fabrication of Dielectric Bragg Reflectors Composed of a CaF2/ZnS Multilayered Coating” ACS Appl. Mater. Interfaces, 7 (1), 474 (2015)
    [29] J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, Henry I. Smith & E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides” Nature 390, 143 (1997)
    [30] E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006)
    [31] M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q Nanocavity with 1D Photonic Gap” Optics Express Vol. 16, Issue 15 (2008)
    [32] T. Yamamoto, M. Notomi, H. Taniyama, E. Kuramochi, Y. Yoshikava, Y. Torii, and T. Kuga, “Design of a high-Q air-slot cavity based on a width-modulated line-defect in a photonic crystal slab” Opt. Express 16, 13809 (2008).
    [33] Lars H. Frandsen, Andrei V. Lavrinenko, Jacob Fage-Pedersen, and Peter I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties” OPTICS EXPRESS, Vol. 14, No. 20, (2006).
    [34] Jacob T. Robinson, Christina Manolatou, Long Chen, and Michal Lipson, “Ultrasmall Mode Volumes in Dielectric Optical Microcavities” PRL 95, 143901 (2005)
    [35] Shota Kita1, Shoji Hachuda, Kengo Nozaki and Toshihiko Baba1, “Nanoslot laser” Appl. Phys. Lett. 97, 161108 (2010)
    [36] Yoshihiro Akahane, Takashi Asano, Bong-Shik Song & Susumu Noda1, “High-Q photonic nanocavity in a two-dimensional photonic crystal” NATURE Vol. 425 30 (2003)
    [37] Yoshihiro Akahane1, Takashi Asano, Bong-Shik Song, and Susumu Noda, “Fine-tuned high-Q photonic-crystal nanocavity” OPTICS EXPRESS Vol. 13, 4 (2005)
    [38] Nguyen-Vi-Quynh Tran, Sylvain Combrié, and Alfredo De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding” PHYSICAL REVIEW B 79, 041101 (2009)
    [39] S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor” OPTICS EXPRESS Vol. 18, No. 15 (2010)
    [40] Ippen, E, “Rapid photobleaching of organic laser dyes in continuously operated devices” Quantum Electronics, IEEE Vol. 7 Issue 4 (1971)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE