簡易檢索 / 詳目顯示

研究生: 吳佳慧
Wu, Chia-Hui
論文名稱: Metallic Arrays for Localized Surface Plasmon Resonance Images Patterned by Nanosphere Lithographic Processes
利用奈米球微影製備金屬奈米點陣列應用於區域性表面電漿影像
指導教授: 嚴大任
Yen, Ta-Jen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 66
中文關鍵詞: 區域性表面電漿
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Localized Surface Plasmon Resonance (LSPR) spectroscopy of metallic nanoparticles is a powerful technique for biological sensing experiment which offers similar sensitivity to the commercially available SPR systems, with the additional advantages of wavelength tunability, smaller sensing volumes, and optical property enhancement.
    Our goal of this thesis is to demonstrate the LSPR wavelength tunability and the image resolution is better than SPR image. We use Nanosphere Lithography (NSL) method combined with annealing process and e-beam evaporator to fabricate various sizes and shape nanodots arrays. Various metallic nanodots including Au, Ag, Cu and Al with the triangular shape and rounded shape are created. The advantages of this process are easy-operation, low-cost, and no limitation to the use of a conducting substrate. The Localized Surface Plasmon Resonance (LSPR) spectra and images of the metallic nanostructures are obtained by using the UV-VIS spectroscopy and reconstruct our optical microscopy with TIR model.
    We first demonstrate the spectrum of gold which is located at 686nm within visible region. For other metals, all of them have a blue-shift compared with gold due to their higher plasma frequency. When the size of the nanodots array becomes smaller or the shape becomes rounded both of the spectra have blue-shift.
    For the second part, we use halogens lamp as our light source to modify our optical microscopy in order to take the TIR image which can eliminate the scattering noise from the top side, besides, it can enhance the S/N ratio. We demonstrate the Au, Ag and Al nanodots array image. We found the resolution of Al is better than Au and Ag cause of the shorter propagation length of Al.


    Table of Content i List of Figure iv Acknowledgements vii Abstract of the Thesis viii 1.1 Introduction 1 1.2 Research Motivation 2 1.3 Thesis Organization 4 Chapter2 Literature Review 5 2.1 Introduction of lithography technique 5 2.2 Surface Plasmon Resonance Microscope8 8 2.3 Introduction of Localized Surface Pasmon Resonance 11 2.1.1 Localized Surface Plasmon Resonance Theory21 12 2.1.2 LSPR size and shape dependence 14 2.1.3 Optical properties of interparticle interaction 16 Chapter3 Methods and Experiments 18 3.1 Reagents and Materials 18 3.2 Experimental Setup 19 3.3 Sample preparation 20 3.3.1 Substrate clean 20 3.3.2 Nanosphere solution 20 3.3.3 PS sphere solution and surfactant proportion 21 3.3.4 Condition 22 3.3.5 Spin coating of polystyrene 24 3.3.6 Annealing process 25 3.3.7 Metal deposition 26 3.3.8 Lift-off 27 3.4 Field-emission scanning electron microscopy (FE-SEM)34 27 3.5 Atomic force microscopy (AFM)34 28 3.6 Ultraviolet-visible spectroscopy (UV-VIS) 28 3.7 Modified optical microscope 29 3.7.1 Light source 31 3.7.2 Sample stage 31 3.7.3Cylindrical Prism 31 3.7.4 CCD camera 32 3.7.5 Magnification 32 Chapter 4 Results and Discussion 33 4.1 Parameters of nanosphere arrangement 33 4.1.1 Concentration 33 4.1.2 Rotating speed and defect 33 4.2 Nanosphere structure analysis 37 4.2.1 Nanodots array analysis 39 4.2.2 Nanodots array with annealing process 41 4.3 Fabricate metallic nanodots array and structure analysis 42 4.3.1 Gold nanodots array fabricated by 523nm PS mask 42 4.3.2 Gold nanodots array fabricated by 281nm PS mask 44 4.3.3 Silver nanodots array 45 4.3.4 Other metallic nanodots arrays: Cu and Al 47 4.4 Localized Surface Plasmon Resonance spectra 49 4.4.1 LSPR spectra of gold nanodots array 50 4.4.2 LSPR spectra of silver nanodots array 50 4.4.3 LSPR spectra of aluminum nanodots array 50 4.4.3 LSPR spectra of copper nanodots array 51 4.5 Localized Surface Plasmon Resonance microscope 54 4.5.1 LSPR image of different image model 55 4.5.2 Plasmonic dimer polarization dependence 56 4.5.3 LSPR image of different metals 58 4.5.5 LSPR image of object 61 Chapter 5 Conclusion 63 Chapter 6 Future work 64 Reference 65

    1 F. E. Wagner, S. Haslbeck, L. Stievano, S. Calogero, Q. A. Pankhurst, and P. Martinek, Nature 407, 691-692 (2000).
    2 A. Haes, D. Stuart, S. Nie, and R. Van Duyne, Journal of Fluorescence 14, 355-367 (2004).
    3 E. Hutter and J. H. Fendler, Advanced Materials 16, 1685-1706 (2004).
    4 J. Homola, S. S. Yee, and G. Gauglitz, Sensors and Actuators B-Chemical 54, 3-15 (1999).
    5 K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, Cancer Research 63, 1999-2004 (2003).
    6 I. H. El-Sayed, X. H. Huang, and M. A. El-Sayed, Nano Letters 5, 829-834 (2005).
    7 A. J. Haes and R. P. Van Duyne, Expert Review of Molecular Diagnostics 4, 527-537 (2004).
    8 K. F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, Biophysical Journal 76, 509-516 (1999).
    9 G. M. Wallraff and W. D. Hinsberg, Chemical Reviews 99, 1801-1821 (1999).
    10 T. Ito and S. Okazaki, Nature 406, 1027-1031 (2000).
    11 H. I. Smith and M. L. Schattenburg, Ibm Journal of Research and Development 37, 319-329 (1993).
    12 J. A. Stroscio and D. M. Eigler, Science 254, 1319-1326 (1991).
    13 R. D. Piner, J. Zhu, F. Xu, S. H. Hong, and C. A. Mirkin, Science 283, 661-663 (1999).
    14 J. C. Hulteen and R. P. Vanduyne, Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films 13, 1553-1558 (1995).
    15 J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, Journal of Physical Chemistry B 103, 3854-3863 (1999).
    16 R. Micheletto, H. Fukuda, and M. Ohtsu, Langmuir 11, 3333-3336 (1995).
    17 A. S. G. Curtis, Journal of Cell Biology 20, 199-& (1964).
    18 H. Verschueren, Journal of Cell Science 75, 279-301 (1985).
    19 D. Axelrod, N. L. Thompson, and T. P. Burghardt, Journal of Microscopy-Oxford 129, 19-28 (1983).
    20 K. A. Willets and R. P. Van Duyne, Annual Review of Physical Chemistry 58, 267-297 (2007).
    21 C. A. F. Daniel L. Feldheim, Metal nanopaticles: synthesis, characterization, and applications (Marcel Dekker, New York, 2002).
    22 E. D. Palik, Handbook of optical constant of solid (Academic Press, New York, 1985).
    23 G. Mie, Annalen Der Physik 25, 377-445 (1908).
    24 D. R. H. Craig F. Bohren, Absorption and scattering of light by small particles (Wiley, New York, 1983).
    25 A. J. Haes and R. P. Van Duyne, Journal of the American Chemical Society 124, 10596-10604 (2002).
    26 T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, Journal of Physical Chemistry B 104, 10549-10556 (2000).
    27 X. Y. Zhang, E. M. Hicks, J. Zhao, G. C. Schatz, and R. P. Van Duyne, Nano Letters 5, 1503-1507 (2005).
    28 P. K. Jain, W. Y. Huang, and M. A. El-Sayed, Nano Letters 7, 2080-2088 (2007).
    29 C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, Physical Review Letters 88, 4 (2002).
    30 H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, Applied Physics Letters 80, 1826-1828 (2002).
    31 W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, Optics Communications 220, 137-141 (2003).
    32 O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. G. Rivas; Vol. 7 (2007), p. 2871-2875.
    33 P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, Physical Review Letters 94, 4 (2005).
    34 汪建民, 材料分析 (中國材料科學學會, 2004).
    35 C.-c. Gong, Innovative Surface Plasmon Resonance Biosensors Employing Dual Parabolic Mirrors (Institute of biophotonics engineering(National Yang-Ming University, Taipie, Taiwan, 2008).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE