簡易檢索 / 詳目顯示

研究生: 黃信維
論文名稱: 混合類別負二項迴歸模型的估計–EM與FCML的比較
Mixture negative binomial regression models –EM and FCML to compare
指導教授: 張延彰
Chang , Yen-Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 南大校區系所調整院務中心 - 應用數學系所
應用數學系所(English)
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 30
中文關鍵詞: 模糊類別模型潛在類別模型負二項迴歸分析
外文關鍵詞: Fuzzy class model, Latent class model, negative binomial regression analysis
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於擁有潛在類別的迴歸模型,我們通常都用的EM 演
    算法來做參數估計。而近來模糊類別最大概似法(Fuzzy
    Classification Maximum Likekihood);簡稱FCML)在具潛
    在類別卜瓦松迴歸的參數估計上有不錯的成效。因此本文
    中,我們將進一步探討在具潛在類別的負二項迴歸模型的參
    數估計問題,這兩種演算法的精確度與效率。透過數值模擬
    的結果顯示,FCML演算法在此模型中,僅在特定的模型假設
    下有較好的結果。整體而言,與EM演算法相較,互有優劣。


    Regarding to Regression Model, which possesses Latent
    class model, we usually use EM algorithm to calculate Parameter
    Eastimations. Recently, Fuzzy Classification Maximum
    Likelihood (abbreviated as FCML) has good outcome in Poisson
    Regression with possession of Latent class model. According to
    this result, we go a step further on discussion of the
    efficiency and the accuracy of negative binomial regression
    analysis with possession of Latent class model. By the result
    of numerical imitation, FCML algorithm has only good outcome
    in specifically hypothesized model. From the whole of
    comparison, both FCML algorithm and EM algorithm have
    advantages and disadvantages.

    第一章 緒論………………………………………………1 第二章 模型介紹…………………………………………2 第一節 卜瓦松迴歸模型的介紹…………………………2 第二節 負二項迴歸模型的介紹…………………………3 第三節 潛在類別負二項回歸模型的介紹………………4 第三章 演算法……………………………………………5 第一節 EM演算法…………………………………………5 第二節 FCML演算法………………………………………11 第四章 EM和FCML數值比…………………………………16 第五章 結論 ………………………………………………23 附錄…………………………………………………………24 參考文獻……………………………………………………25

    [1] D.B Rubin(1977),A.P Dempster and N.M Laird ,Maximum Likelihood form
    incomplete data via the EM algorithm(with discussion),Journal of the Royal Statistical
    B39:1-38﹒
    [2] M.S.Yang(1993),On a class of fuzzy classification Maximum likelihood
    procedures,Fuzzy Sets and Systems 57:365-375﹒
    [3] M.S.Yang、C.Y.Lai(2005) ,Mixture Poisson regression models for heterogeneous
    count data based on latent and fuzzy class analysis﹒
    [4] L.A.Zadeh(1965),Fuzzy sets,Information and control 8:338-353﹒
    [5] J.T Grogger(1990),The deterrent effect of capital punishment:an analysis of daily
    homicide counts,Journal of the American Statistical Association 85:295-303﹒
    [6]M.Wedel,W.S.DeSarbo,J.R. Bult and V.Ramaswamy,A latent class Poisson
    Regression model for heterogeneous count data,Journal of Applied Econometrics 8
    (1993)397- 411

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE