研究生: |
盧俊仁 Lu, Jun-Jen |
---|---|
論文名稱: |
可程式邏輯陣列應用於核能電廠儀控系統之設計、驗證與風險分析 Design, Verification and Risk Assessment of FPGA-based Instrumentation & Control System for Nuclear Power Plant |
指導教授: |
周懷樸
Chou, Hwai-Pwu |
口試委員: |
林強
吳順吉 易俗 黃建華 |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2015 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 129 |
中文關鍵詞: | 可程式邏輯陣列 、共因失效 、核能電廠 、儀控系統 、風險分析 、全功能工程模擬器 |
外文關鍵詞: | Field Programmable Gate Array, Common Cause Failure, Nuclear Power Plant, Instrumentation and Control System, Risk Assessment, full-scope engineering simulator |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣電力公司龍門核能電廠(LMNPP)是以全數位化、分散式控制、多工網路技術建構核能電廠的儀控設施,以微處理器及軟體的技術為基礎設計生產核能電廠內安全、非安全相關系統的數位儀控設施;不過以微處理器及軟體技術為核心的數位儀控設施有不可預測的軟體錯誤與軟體共因失效(Common Cause Failure)的潛在問題存在。 由於軟體錯誤或共因失效問題出現的當下可能會破壞核能電廠安全保護設施的硬體多重性(Redundancy),將造成核能電廠重大的影響。 因此,多樣性的備選設計及實現方式(Diverse Backup Implementation)是核能儀控設施克服軟體錯誤與軟體共因失效問題的重大方案。 本研究探討以現場可程式邏輯陣列(Field Programmable Gate Array, FPGA)技術實現部份馬鞍山PWR核能電廠、龍門ABWR核能電廠儀控設施的可行性及初步設計。
首先,本研究以FPGA技術實現馬鞍山PWR核能電廠的預期暫態未急停緩和系統致動線路(Anticipated-Transient-Without-Scam Mitigation System and Actuation Circuit, AMSAC)之觀念及初步設計,並在AMSAC電路與驗證電腦(簡化的反應器/電廠系統介面)間設計一個工程模擬介面視窗軟體,提供三迴路FPGA-based AMSAC電路的功能測試環境。
第二,本研究展示一個ABWR飼水控制器的新設計,並與龍門電廠自動化功率調節系統(Automatic Power Regulating system, APR)整合運轉。 新的ABWR飼水控制器採用FPGA技術實現規則化的階層式模糊邏輯控制理論(Rule-based Hierarchical Fuzzy Logic Control Algorithm),FPGA-based飼水控制器整合於龍門電廠的全功能工程模擬器,並依循龍門電廠自動功率調節的兩條功率/爐心流量圖(Power/Flow Map)軌跡,於APR自動功率調節運轉模式下進行功能驗證與性能評估,並與原ABWR飼水控制器進行性能比較;新設計在暫態反應(Transient Response)及穩態追蹤能力(Steady State Tracking Capability)兩方面都有不錯的表現;模擬的結果顯示,在先進核能電廠自動化運轉及應用上,FPGA-based規則化階層式模糊邏輯控制器是實用的設計方式。
第三,本論文探討以FPGA技術為基礎設計龍門電廠ABWR的四迴路RPS反應器保護系統,此FPAG-based RPS電路整合於龍門電廠全功能工程模擬器進行功能驗證與系統評估;在系統評估時,以龍門電廠的事故腳本或不正常條件加入工程模擬器以便啟動RPS的功能。 模擬的結果顯示,以FPGA技術為基礎設計核能電廠的儀控系統是實現多樣性備選設計的一種實用方式,同時對台灣電力公司其他核能電廠的傳統類比式儀控系統的現代化與更新也是一個容易及方便的設計技術。 由於FPGA電路運轉中無其他軟體的介入,可以降低不可預測的軟體錯誤及軟體共因失效的風險,同時也可以減少核能電廠申請執照時面臨法規對軟體的限制與成本支出。
最後,本研究進行龍門電廠PRA (Probabilistic Risk Assessment)的靈敏度分析,結果顯示RPS結合ARI(Alternative Rod Insertion)系統驅動龍門電廠控制棒的機構對爐心熔毀頻率(Core Damage Frequency, CDF)的計算貢獻很大;本研究的PRA靈敏度分析與RPS的設計科技無關。
The instrumentation and control (I&C) systems for the Lungmen nuclear power plant are fully digitized based on microprocessor and software technology, and extensively utilize multiplexing networks. That is, undetectable software faults and common cause failures due to software errors may occur, and that will defeat the redundancy of a nuclear power plant (NPP). A diverse backup implementation for the digital I&C systems is an important means to defense against undetectable software faults. This research is to explore the feasibility and preliminary design of using FPGA-based instrumentation and control systems for nuclear power plants (PWR type Maanshan NPP and ABWR type Lungmen NPP).
First, this research explores a concepture design of using FPGA-based triple-redundant system for Anticipated-Transient-Without-Scam Mitigation System and Actuation Circuit (AMSAC) for Taipower’s Maanshan PWR type NPP. A simulated interface between AMSAC system and simplifed reactor/plant systems is developed to provide a test environment to validate the triple-redundant FPGA-based system.
Second, this paper presents a new feed-water controller under the automatic power regulating system (APR) for Taipower’s Lungmen ABWR type NPP (LMNPP). The new feed-water controller is designed by using a rule-based hierarchical fuzzy logic control algorithm and is implemented by using the modern FPGA technology. The FPGA-based feed-water controller is integrated into the LMNPP’s full-scope engineering simulator with APR system for validation and performance evaluation. Under automatic power maneuvers, two trajectories in the power/flow map have been tested and compared with the origin design. The transient response and the steady state tracking capability are evaluated and showed satisfactory results. The results demonstrate that the FPGA-based hierarchical fuzzy logic controller is a practical approach for automatic power operations in advanced nuclear power plant applications.
Third, this paper presents the system assessment of a quad-redundant RPS system design for Taipower’s Lungmen ABWR type NPP by utilizing FPGA technology. The FPGA-based RPS system has been assessed by using the LMNPP’s full-scope engineering simulator. Accident scenarios and abnormal conditions are inserted into the engineering simulator in order to activate the function of the FPGA-based RPS. The assessment results demonstrate that the FPGA-based nuclear instrumentation and control system is a practical approach to implement a diverse backup for nuclear power plant applications and can easily be used for the modernization of Taipower’s nuclear power plant analog systems. The software-free FPGA-based system may reduce the safety risk of undetectable software faults and common cause failures, and also minimize the regulatory licensing efforts and cost.
Final, the sensitivity study of probabilistic risk assessment (PRA) shows that RPS combined with ARI (Alternative Rod Insertion) contributes significant influence on the core damage frequency (CDF) calculation of LMNPP. The PRA sensitivity study is independent of the RPS technology.
1. Miljko Bobrek, Richard T. Wood, “FPGA Design Practices for I&C in Nuclear Power Plants”, NPIC&HMIT 2009, Knoxville, Tennessee, USA, April 5-9, 2009.
2. Rossnyev Alvarado, David Herrell, “Approach to Designing FPGA-based Digital I&C Systems for Nuclear Applications”, NPIC&HMIT 2009, Knoxville, Tennessee, USA, April 5-9, 2009.
3. Patrick Salaun, Frederic Daumas and Thuy NGuten, “FPGA/ASIC: A promising technology for future of I&C in power industry”, NPIC&HMIT 2009, Knoxville, Tennessee, USA, April 5-9, 2009.
4. Tadashi MIYAZAKI, Naotaka ODA, Yasushi GOTO, Toshifumi HAYASHI, “Qualification of FPGA-Based Safety-Related PRM System”, NPIC&HMIT 2009, Knoxville, Tennessee, USA, April 5-9, 2009.
5. Mikhail Yastrebenetsky, Volodymyr Sklyar, Yuriy Rozen, Svetlana Vinogradskaya, “Safety Assessment of FPGA-based ESFAS”, NPIC&HMIT 2009, Knoxville, Tennessee, USA, April 5-9, 2009.
6. U.S. NRC, “Wolf Creek Generating Station – Issuance of Amendment re: Modification of the Main Steam and Feedwater Isolation System Controls (TAC NO. MD4839)”, U.S. NRC, March 31, 2009, Available at: US NRC www.nrc.gov ADAMS Public Library Accession Number ML090610317.
7. Actel Corporation, “Actel SmartFusion Intelligent Mixed-Signal FPGAs Datasheet, Revision 1”, March 2010.
8. Westinghouse Electric Crop. Comprehensive Nuclear Training Operations, “I&C Training–Taiwan Power Company Maanshan Units 1 and 2 AMSAC System”, 1981.
9. 台灣電力公司, “馬鞍山核電廠 - RO23訓練教材”, Feb 2009.
10. 台灣電力公司, “Lungmem Nuclear Power Plant - Advanced Boiling Water Reactor Technical Manual, Rev. 7”, 2009.
11. IIJIMA T., NAKAJIMA Y., NISHIWAKI Y., “Application of Fuzzy Logic Control System for Reactor Feed-Water Control”, Elsevier Science B.V, Fuzzy Sets and Systems, 74, 1995, 61-72.
12. LIN C., JENG F. L., LEE C. S., RAGHAVAN R., “Hierarchical fuzzy logic water-level control in advanced boiling water reactors”, Nuclear Technology 118 (3), 1997, 254-262.
13. MCKENNA M., WILAMOWSKI B. M., “Implementing a Fuzzy System on a Field Programmable Gate Array”, Proceedings of the International Joint Conference on Neural Networks (IJCNN 2001), 2001.
14. HUANG H. H., CHOU H. P., LIN C., “Design of a FPGA Based ABWR Feed-water Controller”, Nuclear Engineering and Technology 44 (4), May 2012, 363-368.
15. LEE C. M., TSAI W. C., PANG T., “Simulator for the New Generation of Nuclear Power Plants - The Lungmen ABWR Simulator”, Proceedings of the 6th international topical meeting on Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies (NPIC & HMIT 2009), Knoxville, Tennessee, USA, April 5-9, 2009.
16. Jun-Jen Lu and Hwai-Pwu Chou, “Design of an FPGA-Based PWR ATWS Mitigation System”, International Journal of Nuclear Safety and Simulation, Vol. 4, Number 4, December 2013, 311-318.
17. Jun-Jen Lu, Hsuan-Han Huang and Hwai-Pwu Chou, “An FPGA-Based Fuzzy Logic Control of Feed-Water for ABWR Automatic Power Regulating System”, Progress in Nuclear Energy, 79, 2015, 22-31.
18. Jun-Jen Lu, Hwai-Pwu Chou and Kin-WahWong, “Conceptual Design of FPGA Based RPS for the Lungmen Nuclear Power Plant”, NPIC&HMIT 2010, Las Vegas, Nevada, November 7-11, 2010.
19. Jun-Jen Lu, Teng-Chieh Hsu and Hwai-Pwu Chou, “System Assessment of an FPGA-Based RPS for ABWR Nuclear Power Plant”, Progress in Nuclear Energy, 85, 2015, 44-55.
20. Taiwan Power Company, “EU STRESS TEST FOR LMNPP -LICENSEE REPORT (Rev.1b)”, May 2013, Available at: http://www.aec.gov.tw/english/nuclear/files/stress-10.pdf)
21. She Jingke and Jiang Jin, “Application of FPGA to Shutdown System No.1 in CANDU”, NPIC&HMIT 2009, Knoxville, Tennessee, USA, April 5-9, 2009.
22. U.S. Nuclear Regulatory Commission, “Safety Evaluation for Topical Report 6002-00301 Advanced Logic System Topical Report”, September 9, 2013.