研究生: |
黃芊筑 Huang, Chien Chu |
---|---|
論文名稱: |
奈米銀對於小鼠體外血腦屏障模型之緊密連接及發炎影響 Silver nanoparticles altered tight junctions and inflammation in vitro model of mouse blood-brain barrier |
指導教授: |
莊淳宇
Chuang, Chun Yu |
口試委員: |
吳劍侯
黃鈺軫 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 奈米銀 、發炎反應 、緊密連接 、血腦屏障 |
外文關鍵詞: | silver nanoparticle, inflammation, tight junctions, blood brain barrier |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,奈米科技蓬勃發展,奈米材料被廣泛應用於日常生活中,由於銀具有抗菌殺菌效果,將銀奈米化生成之銀奈米粒子(silver nanoparticle, AgNPs),表面積大幅增加,提升抗菌效果,廣泛應用於日常用品中,增加人體暴露AgNPs機會。已有研究指出AgNPs可透過皮膚接觸、攝食及吸入方式進入人體,透過血液循環系統至各器官,並且可經由腦微血管通過血腦屏障進入腦組織及中樞神經系統中,產生活性氧物質(reactive oxygen species),造成神經細胞發炎反應和神經細胞凋亡,進而可能誘發神經退化性疾病,但目前對於AgNPs如何破壞血腦屏障進入神經系統中仍不清楚。因此,本研究目的為探討AgNPs暴露是否增加體外血腦屏障通透度及減少緊密連接(tight junctions)分泌之情形,以及觀察AgNPs是否通過血腦屏障進入腦神經細胞中,影響發炎相關基因表現。
本研究利用小鼠腦微血管內皮bEnd.3細胞(mouse brain endothelial cells)、星狀膠ALT細胞(mouse brain astrocyte cells)及神經元N2a細胞(mouse neuroblastoma)之三層細胞共培養系統,模擬體外血腦屏障暴露AgNPs,觀察其對於三層細胞共培養系統之緊密連接及發炎影響。結果顯示單層bEnd.3細胞暴露AgNPs (1、2及4 g/mL) 24小時,會增加發炎和氧化還原相關基因(C-X-C motif chemokine 13 (CXCL13)、macrophage receptor with collagenous structure (MARCO)、glutathione synthetase (GSS)、tumor necrosis factor α (TNFα)、interlukin-6 (IL-6)及interlukin-1β (IL-1β))表現,降低緊密連接之claudin-5 (Cldn-5)基因和蛋白表現及其上游基因low density lipoprotein receptor-related protein 5 (Lrp5)表現,對於緊密連接之zona occludens-1 (ZO-1)及occludin (Ocln)基因表現則無顯著影響。在bEnd.3細胞與ALT細胞共培養系統中,隨著AgNPs暴露濃度上升,bEnd.3細胞電阻值越低,導致bEnd.3細胞通透度上升,使AgNPs通過血腦屏障。三層細胞共培養系統暴露AgNPs (2、3及4 g/mL) 24小時後,bEnd.3細胞中發炎相關基因interleukin-2 (IL-2)、interleukin-17A (IL-17A)、interferon gamma (IFN-γ)、IL-6、IL-1β和monocyte chemoattractant protein-1 (MCP-1)表現量下降;ALT細胞中IL-2、IL-17A、IFN-γ和MCP-1基因表現量上升,IL-1β和IL-6基因表現量下降;N2a細胞中僅MCP-1基因表現量上升。此外,三層細胞共培養系統暴露AgNPs,在上層培養液中增加MCP-1和IL-6蛋白分泌量,降低IL-1β蛋白分泌量,在下層培養液中增加MCP-1蛋白分泌量。
本研究得知在單層bEnd.3細胞暴露AgNPs增加發炎相關基因表現及降低緊密連接Cldn-5 基因表現。在三層細胞共培養系統中,AgNPs暴露降低bEnd.3細胞緊密連接蛋白claudin-5和ZO-1分泌,增加細胞通透度,使AgNPs通過血腦屏障,促使ALT細胞發炎相關基因表現及MCP-1蛋白分泌,但N2a細胞之發炎相關基因表現大多未受影響,顯示bEnd.3細胞和ALT細胞能抵禦AgNPs對於N2a細胞之影響。由上述結果可知體外血腦屏障模型暴露AgNPs會影響緊密連接及發炎相關蛋白及基因表現,因此AgNPs對於人體影響應受關注。
Due to the vigorous development of nanotechnology, nanomaterials are used in a variety of fields including commercial products and biomedical applications. Silver nanoparticles (AgNPs) are applied to daily utilities due to antimicrobial activity, which increase the chance of AgNPs exposure in human. AgNPs can get into human body via dermal contact, ingestion and inhalation, and distribute to various organs via blood circulation. AgNPs can cross through blood brain barrier (BBB) to potentially induce neurotoxicity for neurodegenerative diseases. However, there is not clearly how AgNPs disrupt BBB. Thus, this study investigated the potential effects of 3-5 nm AgNPs on inflammation and tight junctions individually in mouse brain endothelial bEnd3 cells and in vitro model of mouse BBB.
In vitro model of mouse BBB was constrcted by bEnd3 cells, mouse brain ALT astrocytes and mouse neuroblastoma N2a cells to investigate the potential effects of 3-5 nm AgNPs on gene expression of inflammation and tight junctions. The results showed AgNPs exposure increased the gene expression relevant to inflammation (CXC motif chemokine 13 (CXCL13), macrophage receptor with collagenous structure (MARCO), glutathione synthetase (GSS), tumor necrosis factor α (TNFα), interlukin-6 (IL-6) and interlukin-1β (IL-1β)) and decreased the gene expression of claudin-5 (Cldn-5) and Lrp5 in bEnd.3 cells. The zona occludens-1 (ZO-1) and occludin (Ocln) gene expression had no significant effect in bEnd.3 cells after AgNPs exposure. In bEnd.3 cells and ALT cells co-culture system, as AgNPs exposure concentration increased, the lower the TEER value in bEnd.3 cells which lead to AgNPs cross through BBB. Additionally, immunofluorescence images showed reduction of claudin-5 and ZO-1 protein for BBB disruption in bEnd.3 cells of co-culture system. After the triple cell co-culture system exposed to AgNPs (2, 3 and 4 g/ml) for 24 hour, the gene expression relevant to inflammation (interleukin-2 (IL-2)、interleukin-17A (IL-17A)、interferon gamma (IFN-γ)、IL-6、IL-1β and monocyte chemoattractant protein-1 (MCP-1) decreased in bEnd.3 cells;The gene expression of IL-2, IL-17A, IFN-γ and MCP-1 increased in ALT cells;Only the MCP-1 gene expression increased in N2a cells. Besides, 4 g/mL AgNPs exposure increased MCP-1 and IL-6 cytokine secreation and decreased IL-1β cytokine secreation in the upper medium of in triple cell co-culture system.
This study found that AgNPs exposure increased the gene expression relevant to inflammation and decreased the gene expression of Cldn-5 in bEnd.3 cells. In triple cell co-culture system, AgNPs exposure reduced claudin-5 and ZO-1 protein expression leading to permeability of bEnd.3 cells rise. AgNPs can cross through BBB leading to inflammation in ALT cells. Besides, AgNPs exposure obviously altered the gene expression of tight junctions and inflammation in vitro model of mouse BBB. Therefore the effect of AgNPs to human body should be concern.
第七章 參考文獻
1. Graf, C., et al., A general method to coat colloidal particles with silica. Langmuir, 2003. 19(17): p. 6693-6700.
2. Kim, J.S., et al., Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 2007. 3(1): p. 95-101.
3. Ahamed, M., M.S. AlSalhi, and M.K.J. Siddiqui, Silver nanoparticle applications and human health. Clinica Chimica Acta, 2010. 411(23–24): p. 1841-1848.
4. Phalen, R.F., & Morrow, P.E., Experimental inhalation of metallic silver. Health Physics, 1973. 24(5): p. 509-518.
5. J. E. Furchner, C.R.R.a.G.A.D., Comparative metabolism of radionuclides in mammals-IV. Retention of silver-110m in the mouse, rat, monkey, and dog. Health Physics, 1968. 15(6): p. 505-14.
6. Clemente, G.F., L.C. Rossi, and G.P. Santaroni, Trace element intake and excretion in the italian population. Journal of Radioanalytical Chemistry, 1977. 37(2): p. 549-558.
7. Samberg, M.E., S.J. Oldenburg, and N.A. Monteiro-Riviere, Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environmental Health Perspectives, 2010. 118(3): p. 407-413.
8. Faedmaleki, F., et al., Toxicity effect of silver nanoparticles on mice liver primary cell culture and HepG(2) cell line. Iranian Journal of Pharmaceutical Research : IJPR, 2014. 13(1): p. 235-242.
9. Braakhuis, H., et al., Particle size dependent deposition and pulmonary inflammation after short-term inhalation of silver nanoparticles. Particle and Fibre Toxicology, 2014. 11(1): p. 1-16.
10. Wang, J., et al., Expression changes of dopaminergic system-related genes in PC12 cells induced by manganese, silver, or copper nanoparticles. NeuroToxicology, 2009. 30(6): p. 926-933.
11. Powers, C.M., et al., Silver impairs neurodevelopment: Studies in PC12 cells. Environmental Health Perspectives, 2010. 118(1): p. 73-79.
12. Huang, C.-L., et al., Silver nanoparticles affect on gene expression of inflammatory and neurodegenerative responses in mouse brain neural cells. Environmental Research, 2015. 136(9): p. 253-263.
13. Scholars, W.W.I.C.f., Project on emerging nanotechnologies, inventory of nanotechnology-based consumer products. 2009. 146(10):p. 146-157
14. Yang, Y. and P. Westerhoff, Presence in, and Release of, nanomaterials from consumer products, in nanomaterial. 2014, Springer Netherlands. p. 1-17.
15. Ajitha B, R.Y.a.R.P., Biosynthesis of silver nanoparticles using Momordica charantia leaf broth: Evaluation of their innate antimicrobial and catalytic activities. Journal of Photochemistry and Photobiology B: Biology, 2015. 146(3): p. 1-9.
16. Fabianne Ribeiroa, J.A.G.-U., Kerstin Jurkschatc, Alison Crossleyc, Martin Hassellövb, Cameron Taylorc, Amadeu M.V.M. Soaresa, Susana Loureiroa, Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Science of The Total Environment, 2014. 466-467(1): p. 232–241.
17. Kumar, S., et al., Ag nanoparticles-anchored reduced graphene oxide catalyst for oxygen electrode reaction in aqueous electrolytes and also a non-aqueous electrolyte for Li-O2 cells. Physical Chemistry Chemical Physics, 2014. 16(41): p. 22830-22840.
18. Powers, C.M., Developmental neurotoxicity of silver and silver nanoparticles modeled in vitro and in vivo. Department of Pharmacology & Cancer Biology Duke University, 2010.
19. Sung, J.H., et al., Lung function changes in Sprague-Dawley Rats after prolonged inhalation exposure to silver nanoparticles. Inhalation Toxicology, 2008. 20(6): p. 567-574.
20. Gaiser, B.K., et al., Effects of silver nanoparticles on the liver and hepatocytes in vitro. Toxicological Sciences, 2013. 131(2): p. 537-547.
21. Lee, J.H., et al., Biopersistence of silver nanoparticles in tissues from Sprague–Dawley rats. Particle and Fibre Toxicology, 2013. 10(1): p. 1-14.
22. George R, M.S., Wang TT, Kennedy P & Maitz P., In vivo analysis of dermal and systemic absorption of silver nanoparticles through healthy human skin. Australasian Journal of Dermatology, 2014. 55(3): p. 185-190.
23. Walczak AP, F.R., Peters R, Tromp P, Herrera Rivera ZE, Rietjens IM, Hendriksen PJ, Bouwmeester H., Behaviour of silver nanoparticles and silver ions in an in vitro human gastrointestinal digestion model. Nanotoxicology, 2013. 7(7): p. 1198-1210.
24. Braakhuis, H.M., et al., Identification of the appropriate dose metric for pulmonary inflammation of silver nanoparticles in an inhalation toxicity study. Nanotoxicology, 2015. 124(2): p. 1-11.
25. Song, Y., X. Li, and X. Du, Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma. European Respiratory Journal, 2009. 34(3): p. 559-567.
26. Wu, J., et al., Effects of prenatal exposure to silver nanoparticles on spatial cognition and hippocampal neurodevelopment in rats. Environmental Research, 2015. 138: p. 67-73.
27. Xia, G., et al., The effect of silver nanoparticles on zebrafish embryonic development and toxicology. Artificial Cells, Nanomedicine, and Biotechnology, 2015. 78(9): p. 1-6.
28. Braydich-Stolle, L., et al., In Vitro Cytotoxicity of Nanoparticles in Mammalian Germline Stem Cells. Toxicological sciences : an official journal of the Society of Toxicology, 2005. 88(2): p. 412-419.
29. Arora, S., et al., Cellular responses induced by silver nanoparticles: In vitro studies. Toxicology Letters, 2008. 179(2): p. 93-100.
30. Lam PK, C.E., Ho WS, Liew CT, In vitro cytotoxicity testing of a nanocrystalline silver dressing (acticoat) on cultured keratinocytes. British Journal of Biomedical Science, 2004. 61(3): p. 125-7.
31. PIOTR ORŁOWSKI , M.K., ANNA WINNICKA , ANDRÉ CHWALIBÓG, EWA SAWOSZ, Toxicity of silver nanoparticles in monocytes and keratinocytes: Potential to induce inflammatory reactions. Central-European Journal of Immunology 2012. 37(2): p. 123-130.
32. Tang, J., et al., Influence of silver nanoparticles on neurons and blood-brain barrier via subcutaneous injection in rats. Applied Surface Science, 2008. 255(2): p. 502-504.
33. Wiley, D.T., et al., Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor. Proceedings of the National Academy of Sciences, 2013. 110(21): p. 8662-8667.
34. Xu, L.S., Anliang; Zhao, Yanhong; Wang, Zhijie; Zhang, Cuiping; Sun, Yilin; Deng, Jie; Chou, Laisheng Lee, Neurotoxicity of Silver Nanoparticles in Rat Brain After Intragastric Exposure. Journal of Nanoscience and Nanotechnology, 2015. 15(6): p. 4215-4223.
35. Sharma HS, H.S., Schlager J, Ali SF, Sharma A., Influence of nanoparticles on blood-brain barrier permeability and brain edema formation in rats. Acta Neurochirurgica Supplement, 2010. 106(8): p. 359-64.
36. Ji Hyun Lee, Y.S.K., Kyung Seuk Song, Hyun Ryol Ryu, Jae Hyuck Sung, Jung Duck Park, Hyun Min Park, Nam Woong Song, Beom Soo Shin, Daniel Marshak, Kangho Ahn, Ji Eun Lee and Il Je Yu, Biopersistence of silver nanoparticles in tissues from Sprague–Dawley rats. Particle and Fibre Toxicology, 2013. 10(36).
37. Trickler, W.J., et al., Silver nanoparticle induced blood-brain barrier inflammation and increased permeability in primary rat brain microvessel endothelial cells. Toxicological Sciences, 2010. 118(1): p. 160-170.
38. Haase, A., et al., Effects of silver nanoparticles on primary mixed neural cell cultures: Uptake, oxidative stress and acute calcium responses. Toxicological Sciences, 2012. 126(2): p. 457-468.
39. Yin, N., et al., Silver nanoparticle exposure attenuates the viability of rat cerebellum granule cells through apoptosis coupled to oxidative stress. Small, 2013. 9(9-10): p. 1831-1841.
40. Egorova, L.S.S.a.E.M., The effect of particle size on the toxic action of silver nanoparticles. Journal of Physics: Conference Series, 2011. 291(1): p. 12-27.
41. Park, E.-J., et al., Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environmental Toxicology and Pharmacology, 2010. 30(2): p. 162-168.
42. Lubick, N., Nanosilver toxicity: ions, nanoparticles—or both? Environmental Science & Technology, 2008. 42(23): p. 8617-8617.
43. Limbach, L.K., et al., Exposure of engineered nanoparticles to human lung epithelial cells: Influence of chemical composition and catalytic activity on oxidative stress. Environmental Science & Technology, 2007. 41(11): p. 4158-4163.
44. Park, E.-J., et al., Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicology in Vitro, 2010. 24(3): p. 872-878.
45. Hsin, Y.-H., et al., The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicology Letters, 2008. 179(3): p. 130-139.
46. Wolburg, H., et al., Modulation of tight junction structure in blood-brain barrier endothelial cells. Effects of tissue culture, second messengers and cocultured astrocytes. Journal of Cell Science, 1994. 107(5): p. 1347-1357.
47. Imola Wilhelm, C.F., and Istvan A. Krizbai, In vitro models of the blood-brain barrier. Acta Neurobiologiae Experimentalis, 2011. 71(7): p. 113–128.
48. Abbott, N.J., L. Ronnback, and H.a. Elisabeth, Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci, 2006. 7(1): p. 41-53.
49. Butt, A.M., H.C. Jones, and N.J. Abbott, Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. The Journal of Physiology, 1990. 429(5): p. 47-62.
50. Chiba, H., et al., Transmembrane proteins of tight junctions. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2008. 1778(3): p. 588-600.
51. Du, D., et al., The Tight junction protein, occludin, regulates the directional migration of epithelial cells. Developmental Cell, 2010. 18(1): p. 52-63.
52. Sandoval, K.E. and K.A. Witt, Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiology of Disease, 2008. 32(2): p. 200-219.
53. Romanitan, M.O., et al., Altered expression of claudin family proteins in Alzheimer’s disease and vascular dementia brains. Journal of Cellular and Molecular Medicine, 2010. 14(5): p. 1088-1100.
54. Haseloff, R.F., et al., Transmembrane proteins of the tight junctions at the blood–brain barrier: Structural and functional aspects. Seminars in Cell & Developmental Biology, 2015. 38(6): p. 16-25.
55. Nitta, T., et al., Size-selective loosening of the blood-brain barrier in claudin-5–deficient mice. The Journal of Cell Biology, 2003. 161(3): p. 653-660.
56. Weber, C., L. Fraemohs, and E. Dejana, The role of junctional adhesion molecules in vascular inflammation. Nat Rev Immunol, 2007. 7(6): p. 467-477.
57. Bradfield, P.F., et al., JAM Family and related proteins in leukocyte migration (Vestweber Series). Arteriosclerosis, Thrombosis, and Vascular Biology, 2007. 27(10): p. 2104-2112.
58. Wolburg, H. and A. Lippoldt, Tight junctions of the blood–brain barrier: development, composition and regulation. Vascular Pharmacology, 2002. 38(6): p. 323-337.
59. Bauer, H., et al., The dual role of zonula occludens (ZO) proteins. Journal of Biomedicine and Biotechnology, 2010. 2010(5): p. 113-118.
60. Umeda, K., et al., ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell, 2006. 126(4): p. 741-754.
61. González-Mariscal, L., et al., Tight junction proteins. Progress in Biophysics and Molecular Biology, 2003. 81(1): p. 1-44.
62. Guillemot, L., et al., Disruption of the cingulin gene does not prevent tight junction formation but alters gene expression. Journal of Cell Science, 2004. 117(22): p. 5245-5256.
63. Parpura, V., et al., Glutamate-mediated astrocyte-neuron signalling. Nature, 1994. 369(6483): p. 744-747.
64. Suzuki, A., et al., Astrocyte-neuron lactate transport is required for long-term memory formation. Cell, 2011. 144(5): p. 810-823.
65. Arthur, F.E., R.R. Shivers, and P.D. Bowman, Astrocyte-mediated induction of tight junctions in brain capillary endothelium: an efficient in vitro model. Developmental Brain Research, 1987. 36(1): p. 155-159.
66. Persidsky, Y., et al., Microglial and astrocyte chemokines regulate monocyte migration through the blood-brain barrier in human immunodeficiency Virus-1 Encephalitis. The American Journal of Pathology, 1999. 155(5): p. 1599-1611.
67. Armulik, A., et al., Pericytes regulate the blood-brain barrier. Nature, 2010. 468(7323): p. 557-561.
68. Feng X, C.A., Zhang Y, Wang J, Shao L, Wei L, Application of dental nanomaterials: potential toxicity to the central nervous system. International Journal of Nanomedicine, 2015. 2015(10): p. 3547—3565.
69. Christine Lehner, R.G., Herbert Tempfer, Istvan Krizbai, Bernhard Hennig, Hans-Christian Bauer, and Hannelore Bauer., Oxidative stress and blood–brain barrier dysfunction under particular consideration of matrix metalloproteinases. Antioxidants & Redox Signaling., 2011. 15(5): p. 1305-1323. .
70. Victoria E. Thiel, K.L.A., Nitric oxide and blood–brain barrier integrity. Antioxidants & Redox Signaling, 2004. 3(2): p. 273-278.
71. Gilgun-Sherki, Y., E. Melamed, and D. Offen, Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology, 2001. 40(8): p. 959-975.
72. Boje, K.M.K., Inhibition of nitric oxide synthase attenuates blood-brain barrier disruption during experimental meningitis. Brain Research, 1996. 720(1–2): p. 75-83.
73. Schinkel, A.H., et al., Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell, 1994. 77(4): p. 491-502.
74. Kalaria, R.N., The blood-brain barrier and cerebral microcirculation in Alzheimer disease. Cerebrovascular and brain metabolism reviews, 1992. 4(3): p. 226-260.
75. Kortekaas, R., et al., Blood–brain barrier dysfunction in parkinsonian midbrain in vivo. Annals of Neurology, 2005. 57(2): p. 176-179.
76. Minagar, A. and J.S. Alexander, Blood-brain barrier disruption in multiple sclerosis. Multiple Sclerosis, 2003. 9(6): p. 540-549.
77. Kumar, A., et al., Free Radical Injury and Blood-Brain Barrier Permeability in Hypoxic-Ischemic Encephalopathy. Pediatrics, 2008. 122(3): p. 722-727.
78. Başkaya, M.K., et al., The biphasic opening of the blood–brain barrier in the cortex and hippocampus after traumatic brain injury in rats. Neuroscience Letters, 1997. 226(1): p. 33-36.
79. Marques, F., et al., Blood-brain-barriers in aging and in Alzheimer's disease. Molecular Neurodegeneration, 2013. 8(1): p. 38-49.
80. Imaizumi, T., et al., Expression of tumor necrosis factor-α in cultured human endothelial cells stimulated with lipopolysaccharide or interleukin-1α. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000. 20(2): p. 410-415.
81. Liu, H., et al., TNF-α gene expression in macrophages: Regulation by NF-κB is independent of c-Jun or C/EBPβ. The Journal of Immunology, 2000. 164(8): p. 4277-4285.
82. Tarkowski, E., et al., Intracerebral production of tumor necrosis factor-α, a local neuroprotective agent, in Alzheimer Disease and Vascular Dementia. Journal of Clinical Immunology, 1999. 19(4): p. 223-230.
83. Qian, L., P. Flood, and J.-S. Hong, Neuroinflammation is a key player in Parkinson’s disease and a prime target for therapy. Journal of Neural Transmission, 2010. 117(8): p. 971-979.
84. Börjesson, A., et al., Is there a link between amyotrophic lateral sclerosis and treatment with TNF-alpha inhibitors? Upsala Journal of Medical Sciences, 2013. 118(3): p. 199-200.
85. Rupprecht, T., et al., The chemokine CXCL13 is a key regulator of B cell recruitment to the cerebrospinal fluid in acute Lyme neuroborreliosis. Journal of Neuroinflammation, 2009. 6(1): p. 42.
86. Campbell, S.J., et al., Overexpression of IL-1β by adenoviral-mediated gene transfer in the rat brain causes a prolonged hepatic chemokine response, axonal injury and the suppression of spontaneous behaviour. Neurobiology of Disease, 2007. 27(2): p. 151-163.
87. Krueger, J., et al., Expression and function of interleukin-6 in epithelial cells. Journal of Cellular Biochemistry, 1991. 45(4): p. 327-334.
88. Gruol, D.L., IL-6 regulation of synaptic function in the CNS. Neuropharmacology, 2015. 96(5): p. 42-54.
89. Jing, J., et al., Role of macrophage receptor with collagenous structure in innate immune tolerance. The Journal of Immunology, 2013. 190(12): p. 6360-6367.
90. Iwakura, Y., et al., Functional specialization of interleukin-17 family members. Immunity, 2011. 34(2): p. 149-162.
91. Yang, G., et al., Neuronal MCP-1 mediates microglia recruitment and neurodegeneration induced by the mild impairment of oxidative metabolism. Brain pathology (Zurich, Switzerland), 2011. 21(3): p. 279-297.
92. Luke Schmidt, M.A.C.-S., Toll-like receptor 2 mediates vascular contraction and activates RhoA signaling in vascular smooth muscle cells from STZ-induced type 1 diabetic rats. Pflügers Archiv - European Journal of Physiology, 2015. 467(11): p. 2361-2374.
93. Zhu, Y.-T., et al., Knockdown of both p120 catenin and kaiso promotes expansion of human corneal endothelial monolayers via RhoA-ROCK-moncanonical BMP-NFκB pathway. Investigative Ophthalmology & Visual Science, 2014. 55(3): p. 1509-1518.
94. Nusrat, A., et al., Rho protein regulates tight junctions and perijunctional actin organization in polarized epithelia. Proceedings of the National Academy of Sciences of the United States of America, 1995. 92(23): p. 10629-10633.
95. Ma, T.Y., et al., TNF-α-induced increase in intestinal epithelial tight junction permeability requires NF-κB activation. Vol. 286. 2004. G367-G376.
96. Kim, A.-S., et al., Silver nanoparticles induce apoptosis through the Toll-like receptor 2 pathway. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2012. 113(6): p. 789-798.
97. Ziemińska, E., A. Stafiej, and L. Strużyńska, The role of the glutamatergic NMDA receptor in nanosilver-evoked neurotoxicity in primary cultures of cerebellar granule cells. Toxicology, 2014. 315(12): p. 38-48.
98. Wu, G.-Y. and H.T. Cline, Stabilization of dendritic arbor structure in vivo by CaMKII. Science, 1998. 279(5348): p. 222-226.
99. Song, H., et al., Reduction of brain barrier tight junctional proteins by lead exposure: Role of activation of nonreceptor tyrosine kinase Src via chaperon GRP78. Toxicological Sciences, 2014. 138(2): p. 393-402.
100. Chen, J., et al., Retinal expression of Wnt-Pathway mediated genes in low-density lipoprotein receptor-related protein 5 (Lrp5) knockout mice. PLoS ONE, 2012. 7(1): p. 30203-30213.
101. 陳以婕, 奈米銀及奈米二氧化鈦對體外血腦屏障模型通透性之影響. 碩士論文, 2015. 清華大學生醫工程與環境科學研究所.
102. Trickler, W.J., et al., Porcine brain microvessel endothelial cells show pro-inflammatory response to the size and composition of metallic nanoparticles. Drug Metabolism Reviews, 2014. 46(2): p. 224-231.
103. Shi, J., et al., Endothelial cell injury and dysfunction induced by silver nanoparticles through oxidative stress via IKK/NF-κB pathways. Biomaterials, 2014. 35(24): p. 6657-6666.
104. Parnsamut C, B.S., Effects of silver nanoparticles and gold nanoparticles on IL-2, IL-6, and TNF-α production via MAPK pathway in leukemic cell lines. Genet Mol Res, 2015. 14(2): p. 3650-68.
105. Clapp, B.R., et al., Inflammation-induced endothelial dysfunction involves reduced nitric oxide bioavailability and increased oxidant stress. Cardiovascular Research, 2004. 64(1): p. 172-178.
106. Balkwill, F. and A. Mantovani, Inflammation and cancer: back to Virchow? The Lancet, 2001. 357(9255): p. 539-545.
107. Shi, L.Z. and W. Zheng, Early lead exposure increases the leakage of the blood–cerebrospinal fluid barrier, in vitro. Human & experimental toxicology, 2007. 26(3): p. 159-167.
108. Butt, O.I., P.W. Buehler, and F. D'Agnillo, Blood-brain barrier disruption and oxidative stress in guinea pig after systemic exposure to modified cell-free hemoglobin. The American Journal of Pathology, 2011. 178(3): p. 1316-1328.
109. Viggars, A.P., et al., Alterations in the blood brain barrier in ageing cerebral cortex in relationship to Alzheimer-type pathology: A study in the MRC-CFAS population neuropathology cohort. Neuroscience Letters, 2011. 505(1): p. 25-30.
110. Kook, S.-Y., et al., Disruption of blood-brain barrier in Alzheimer disease pathogenesis. Tissue Barriers, 2013. 1(2): p. 23993-23997.
111. Wu, X.-l., et al., Effects of poly (ADP-ribose) polymerase inhibitor 3-Aminobenzamide on blood–brain barrier and dopaminergic neurons of rats with lipopolysaccharide-induced Parkinson’s disease. Journal of Molecular Neuroscience, 2014. 53(1): p. 1-9.
112. Clairembault, T., et al., Structural alterations of the intestinal epithelial barrier in Parkinson’s disease. Acta Neuropathologica Communications, 2015. 3(1): p. 1-9.
113. Shimizu, F., et al., Sera from remitting and secondary progressive multiple sclerosis patients disrupt the blood-brain barrier. PLoS ONE, 2014. 9(3): p. 92872-92882.
114. James Keaney, D.M.W., et al., Autoregulated paracellular clearance of amyloid-β across the blood-brain barrier. Sci Adv, 2015. 1(8).
115. Meister, S., et al., Expression of the ALS-causing variant hSOD1G93A leads to an impaired integrity and altered regulation of claudin-5 expression in an in vitro blood-spinal cord barrier model. J Cereb Blood Flow Metab, 2015. 35(7): p. 1112-1121.
116. L. Zhang, H.L., Y.-M. Peng, Y.-Y. Dai, F.-Y. Liu, Vascular endothelial growth factor increases GEnC permeability by affecting the distributions of occludin, ZO-1 and tight juction assembly. Eur Rev Med Pharmacol Sci 2015. 19 (14): p. 2621-2627.
117. Chen, L., et al., Endophilin-1 regulates blood-brain barrier permeability via EGFR-JNK signaling pathway. Brain Research, 2015. 1606(22): p. 44-53.
118. Yi, R., G. Xiao-Ping, and L. Hui, Atorvastatin prevents angiotensin II-induced high permeability of human arterial endothelial cell monolayers via ROCK signaling pathway. Biochemical and Biophysical Research Communications, 2015. 459(1): p. 94-99.
119. Liu, W., et al., Endophilin-1 regulates blood–brain barrier permeability by controlling ZO-1 and occludin expression via the EGFR–ERK1/2 pathway. Brain Research, 2014. 1573(5): p. 17-26.
120. Li, Z., et al., Roles of Serine/Threonine Phosphatases in low-dose endothelial monocyte-activating Polypeptide-II-induced opening of blood–tumor barrier. Journal of Molecular Neuroscience, 2015. 57(1): p. 11-20.
121. Oh, T.W., et al., Neuroprotective effect of the hairy root extract of Angelica gigas NAKAI on transient focal cerebral ischemia in rats through the regulation of angiogenesis. BMC Complementary and Alternative Medicine, 2015. 15(14): p. 101.
122. Liu, J., et al., Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood brain barrier damage in early ischemic stroke stage. The Journal of Neuroscience, 2012. 32(9): p. 3044-3057.
123. Wang, Y., et al., Interleukin-1β induces blood–brain barrier disruption by downregulating sonic hedgehog in astrocytes. PLoS ONE, 2014. 9(10): p. 110024-110035.
124. Chai, Q., et al., Enhancement of blood-brain barrier permeability and reduction of tight junction protein expression are modulated by chemokines/cytokines induced by rabies virus infection. Journal of Virology, 2014. 88(9): p. 4698-4710.
125. Huppert, J., et al., Cellular mechanisms of IL-17-induced blood-brain barrier disruption. The FASEB Journal, 2010. 24(4): p. 1023-1034.
126. Yao, Y. and S.E. Tsirka, Truncation of monocyte chemoattractant protein 1 by plasmin promotes blood–brain barrier disruption. Journal of Cell Science, 2011. 124(9): p. 1486-1495.
127. Conductier, G., et al., The role of monocyte chemoattractant protein MCP1/CCL2 in neuroinflammatory diseases. Journal of Neuroimmunology, 2010. 224(1): p. 93-100.
128. Theresa C. Barnes, M.E.A.a.R.J.M., The many faces of interleukin-6: The role of IL-6 in inflammation, vasculopathy, and fibrosis in systemic sclerosis. International Journal of Rheumatology, 2011. 2011(3): p. 6-12.
129. Flügel, A., et al.,, Neuronal MCP-1 expression in response to remote nerve injury. J Cereb Blood Flow Metab, 2001. 21(1): p. 69-76.
130. Nelson, B.H., IL-2, Regulatory T cells, and tolerance. The Journal of Immunology, 2004. 172(7): p. 3983-3988.
131. Yong, V.W., et al., Gamma-interferon promotes proliferation of adult human astrocytes in vitro and reactive gliosis in the adult mouse brain in vivo. Proceedings of the National Academy of Sciences of the United States of America, 1991. 88(16): p. 7016-7020.
132. Hu, M.H., et al., Neuroprotection effect of interleukin (IL)-17 secreted by reactive astrocytes is emerged from a high-level IL-17-containing environment during acute neuroinflammation. Clinical & Experimental Immunology, 2014. 175(2): p. 268-284.
133. Eugenin, E.A., et al., MCP-1 (CCL2) protects human neurons and astrocytes from NMDA or HIV-tat-induced apoptosis. Journal of Neurochemistry, 2003. 85(5): p. 1299-1311.