研究生: |
梁凱智 Kai-Chih, Liang |
---|---|
論文名稱: |
CMOS製程整合電熱致動與壓阻感測之元件開發 Integration of the Electrothermal Actuator and Piezoresistive Sensor by CMOS Process |
指導教授: |
方維倫
Weileun Fang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 78 |
中文關鍵詞: | 微機電系統 、熱致動器 、CMOS |
外文關鍵詞: | CMOS MEMS, thermal actuator, CMOS |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
CMOS MEMS製程是直接從一般IC製造中的CMOS製程加上微加工技術,使其具有機械功能,所以使用CMOS MEMS製程來製作微機電系統元件,不僅具有一般微機電加工技術的優點,也因為與一般IC製程完全相容的特性,十分容易與現有的IC電路整合,形成一個完整的微機電系統。
本研究提出一個可同時致動與感測之元件設計與製作,透過標準CMOS製程,輔以兩道後製程蝕刻,完成元件之製作。元件由一個中心平板與四根懸吊的支撐臂所組成,支撐臂在中心平板的對角線上分別定義一對熱致動臂及感測臂之設計,熱致動臂將帶動中心平板產生出平面位移,平板的位移將連同牽引壓阻感測臂產生形變,可得到感測之回授訊號。本研究提供一個完整之設計流程,包含了元件之設計模擬、CMOS後段製程與量測結果等,並對未來在類似之延伸應用,提供完善參考依據。
Nowadays, mature CMOS standard process is not restricted itself in IC fabrication but steadily integrates MEMS on a monolithic single chip called CMOS MEMS. IC and MEMS fabricated under CMOS process could eliminate processing steps and their complexity. The merit of monolithic integration reveals SoC achievability. Most developing or production MEMS devices fabricated under CMOS process are integrating sensors and ICs. Nevertheless, integration of micro transducers including actuator, sensor and IC will make system multi-function and precision controllability.
This study demonstrates an integration of actuating and sensing mechanism which consisted of one plate structure, two thermal actuators, and two piezoresistive sensors. Thus, the mechanism of the plate is sensed and controlled by the sensors and actuators, respectively. This micromachined mechanism was realized using a standard UMC 0.5 µm 2 poly and 2 metal CMOS process. After conventional CMOS process, post CMOS process is necessary to release MEMS device, which adopts RIE treatment and TMAH wet etching. By external measurement, we have characterized the device’s performances by static operation, dynamic performance, and actuating temperature distribution under steady state. This study proposes a complete design flow for similar CMOS MEMS applications including simulation, post CMOS process, and measured results.
[1] H. Baltes, O. Brand, A. Hierlemann, D. Lange, and C. Hagleitner, “ CMOS MEMS – present and future,” The 15th IEEE International Conference on Micro Electro Mechanical Systems. pp 459-466, 2002.
[2] H. Baltes, and O. Brand,“ CMOS-based microsensors and packaging,” Sensors and Actuators A. 92, pp 1-9, 2001.
[3] http://www.dlp.com
[4] http://www.analog.com/
[5] http://www.honeywell.com/sites/honeywell/
[6] http://www.infineon.com/
[7] http://www.sandia.gov/
[8] K.H.-L. Chau, S.R. Lewis, Y.Zhao, R.T. Howe, S.F. Bart, and R.G. Marcheselli,“ An integrated force-balanced capacitive accelerometer for low-G applications,” Tech. Digest, 9th Int. Conf. Solid-State Sensors and Actuators. pp 593-596, 1995.
[9] G.K. Fedder, S. Santhanam, M.L. Reed, S.C. Eagle, D.F. Guillou, M.S.-C. Lu, and L.R. Carley,“ Laminated high-aspect-ratio microstructures in a conventional CMOS process,” Sensors and Actuators A. 57, pp 103-110, 1996.
[10] E.H. Klaassen, R.J. Reay, C. Storment, J. Andy, P. Henry, A.P. Brokaw, and G.T. Kovacs,“ A micromachined thermally isolated circuits,” Proceedings of the Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC. pp 127-131, 1996.
[11] H. Xie, L. Erdmann, X. Zhu, K. Babriel, and G.K. Fedder, “ Post-CMOS processing for high-aspect-ratio integrated silicon microstructures,” J. Microelectromech. Syst., 11, pp.93-101, 2002.
[12] D.J. Young, and B.E. Boser,“ A micromachine-based RF low-noise voltage-controlled oscillator,” Custom integrated circuits conference, proceeding of the IEEE. pp 5-8, 1997.
[13] J. Buhler, J. Funk, J.G. Korvink, F.-P. Steiner, P.M. Sarro, and H. Baltes,“ Electrostatic aluminum micromirrors using double-pass metallization,” Journal of Microelectromechanical Systems. 6, pp 126-135, 1997.
[14] T. Yasuda, I. Shimoyama, and H. Miura,“ CMOS drivable electrostatic microactuator with large deflection.” The 10th IEEE International Conference on Micro Electro Mechanical Systems. pp 26-30, 1997.
[15] C.L. Dai, H.L. Chen, and P.Z. Chang,“ Fabrication of a micromachined optical modulator using the CMOS process,” J. Micromech. Microeng. 11. pp 612-615, 2001.
[16] S. P. Timoshenko, “ Analysis of bi-metal thermostats,” J. Opt. Soc. Am. 11 233-55,1925.
[17] H. Guckel, J. Klein, T. Christenson, K. Skrobis, M. Laudon, and E. G. Lovell, “ Thermo-magnetic metal flexure actuators,” Tech. Digest, 5th Int. Conf. Solid-State Sensors and Actuators. pp 73-75, 1992.
[18] W. Riethmuller, and W. Benecke,“ Thermally excited silicon microactuators.” Electron Devices, IEEE Transactions. 35, pp 758 -763, 1988.
[19] M. Parameswaran, L. Ristic, K. Chau, A.M. Robinson, and W. Allegretto, “ CMOS electrothermal microactuators.” Micro Electro Mechanical Systems, 'Proceedings, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots'. , IEEE. pp 128 -131, 1990.
[20] A. Tuantranont, L.-A. Liew, V.M. Bright, W. Zhang, and Y.C. Lee, “ Smart phase-only micromirror array fabricated by standard CMOS process,” The 13th IEEE International Conference on Micro Electro Mechanical Systems. pp 455-460, 2000.
[21] M. Huja, and M. Husak,“ Thermal microactuators for optical purpose,” Proceedings of International Conference on Information Technology: Coding and Computing. pp 137 -142, 2001.
[22] A. Oz, and G.K. Fedder, “ RF CMOS-MEMS capacitor having large tuning range,” Tech. Digest, 12th Int. Conf. Solid-State Sensors and Actuators, Boston, June, 2003. pp 8-12.
[23] W. H. Chu, M. Mehregany, and R.L. Mullen,“ Analysis of tip deflection and force of a bimetallic cantilever icroactuator,” J. Micromech. Microeng. 3 pp. 4-7, 1993.
[24] H. Lakdawala, and G.K. Fedder,“ Analysis of temperature dependent residual stress gradients in CMOS micromachined structures,” 10th Int. Conf. on Solid State Sensors and Actuators, pp 526-9, 1999.
[25] A. Tuantranont, L.A. Liew, V.M. Bright, W. Zhang, and Y.C. Lee, “ Phase-only micromirror array fabricated by standard CMOS process,” Sensors and Actuators A, 89, pp.124-134, 2001.
[26] S. M. Sze, Semiconductor sensors, New York, NY: John wiley & sons, 1994.
[27] V. A. Gridchin, V. M. Lubimsky, and M. P. Sarina, “ Piezoresistive properties of polysilicon films,” Sensors and Actuators A, 49, pp.67-72, 1995.
[28] L. Gisela, K. S. J. Pister, and K. P. Roos, “ Standard CMOS piezoresistive sensor to quantify heart cell contractile forces,” Micro Electro Mechanical Systems, 'Proceedings, An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems'. , IEEE. pp 150 -155, 1996.
[29] V. Beroulle, Y. Bertrand, L. Latorre, and P. Nouet,“ Micromachined CMOS magnetic field sensors with low-noise signal conditioning,” The 15th IEEE International Conference on Micro Electro Mechanical Systems. pp 256-259, 2002.
[30] V. Beroulle, Y. Bertrand, L. Latorre, and P. Nouet,“ Monolithic piezoresistive CMOS magnetic field sensors,” Sensors and Actuators A, 103, pp. 23-32, 2003.
[31] G. Villanueva, J. Montserrat, F. P.-Murano, G. Rius, and J. Bausells, “ Submicron piezoresistive cantilevers in a CMOS-compatible technology for intermolecular force detection,” Microelectronic Engineering, 73-74, pp. 480-486, 2004.
[32] H. Lakdawala, and G.K. Fedder,“ CMOS micromachined infrared imager pixel,” Tech. Digest, 11th Int. Conf. Solid-State Sensors and Actuators, Munich Germany, June, 2001. pp 556-559.
[33] http://www-bsac.eecs.berkeley.edu/
[34] H. Luo, G. K. Fedder, and L. R. Carley,“ A 1 mG lateral CMOS-MEMS accelerometer,” The Thirteenth Annual International Conference on Micro Electro Mechanical Systems, 2000, pp. 502 –507.
[35] H. Xie, and G. K. Fedder,“ A CMOS z-axis capacitive accelerometer with comb-finger sensing,” The 13th Annual International Conference on Micro Electro Mechanical Systems, 2000, pp. 496 –501.
[36] G. Zhang, H. Xie, L. E. de Rosset, and G. K. Fedder,“ A lateral capacitive CMOS accelerometer with structural curl compensation,” The Twelfth IEEE International Conference on Micro Electro Mechanical Systems, 1999, pp. 606 –611.
[37] J. Wu, G. K. Fedder, and L.R. Carley,“ A low-noise low-offset chopper-stabilized capacitive-readout amplifier for CMOS MEMS accelerometers”, Digest of IEEE International Solid-State Circuits Conference, Volume: 1, 2002, pp. 428 –478.
[38] H. Xie, and G..K. Fedder,“ A CMOS-MEMS lateral-axis Gyroscope,” The 14th IEEE International Conference on Micro Electro Mechanical Systems. pp 162-165, 2001.
[39] C. Hierold, A. Hildebrandt, U. Naher, T. Scheiter, B. Mensching, M. Steger, and R. Tielert,“ A pure CMOS surface micromachined integrated accelerometer,” Proceedings of the Ninth Annual International Workshop on Micro Electro Mechanical Systems: An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems, 1996, pp. 174 –179.
[40] I. Y. Park, C. W. Lee, H. S. Jang, Y. S. Oh, and B. J. Ha,“ Capacitive sensing type surface micromachined silicon accelerometer with a stiffness tuning capability,” Proceedings of the Eleventh Annual International Workshop on Micro Electro Mechanical Systems, 1998, pp. 637 –642.
[41] E. J. J. Kruglick, B. A. Warneke, and K. S. J. Pister,“ CMOS 3-axis accelerometers with integrated amplifier,” Proceedings of the Eleventh Annual International Workshop on Micro Electro Mechanical Systems, 1998, pp. 631 –636.
[42] H. Luo, X. Zhu, H. Lakdawala, L.R. Carley, and G.K. Fedder,“ A copper CMOS-MEMS Z-axis gyroscope,” The 15th IEEE International Conference on Micro Electro Mechanical Systems. pp 631-634, 2002.
[43] Y. Yee, M. Park, S. H. Lee, S. Lee, K. Chun,, Y. K. Kim, and D. I. D. Cho, “ MAMOS-a novel displacement sensitive transducer for fully digital integrated ac accelerometer,” Proceedings of the Eleventh Annual International Workshop on Micro Electro Mechanical Systems, 1998, pp. 345 –350.
[44] H. Takao, H. Fukumoto, and M. Ishida,“ Fabrication of a three-axis accelerometer integrated with commercial 0.8 /spl mu/m-CMOS circuits,” The Thirteenth Annual International Conference on Micro Electro Mechanical Systems, 2000, pp. 781 –786.
[45] Y. Konaka, and M. G. Allen,“ Single- and multi-layer electroplated microaccelerometers,” Proceedings of IEEE the Ninth Annual International Workshop on Micro Electro Mechanical Systems: An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems, 1996, pp. 168 –173.
[46] C. Hierold,“ Intelligent CMOS sensors,” Proc. IEEE MEMS. pp 1-6, 2000.
[47] D. Lange, C. Hagleiter, O. Brand, and H. Baltes,“ CMOS resonant beam gas sensor with integrated preamplifier,” Tech. Digest, 10th Int. Conf. Solid-State Sensors and Actuators, Sendai, Japan, June, 1999. pp 1020-1023.
[48] J -J. J. Neumann, and K.J. Gabriel,“ CMOS-MEMS membrane for audio- frequency acoustic actuation.” Sensors and Actuators ., 95, pp 175-182, 2002.
[49] http://www.ansys.com
[50] http://mems.isi.edu/mems/materials/index.html
[51] Q.A. Huang, and N.K.S. Lee, “ Analysis and design of polysilicon thermal flexure actuator,” J. Micromech. Microeng, vol. 9, pp. 64-70, 1999.
[52] G..Z. Yan, P.C.H. Chan, I.M. Hsing, R.K. Sharma, and J.K.O. Sin, “ An improved TMAH Si-etching solution without attacking exposed aluminum,” The 13th IEEE International Conference on Micro Electro Mechanical Systems.pp. 562 -567, 2000.
[53] J. J. Tsaur, C. H. Du, and C. Lee,“ Investigation of TMAH for front-side bulk micromachining process from manufacturing aspect,” Sensors and Actuators A, 92, p375-383, 2001.