研究生: |
劉曜毅 Yao-Yi Liu |
---|---|
論文名稱: |
氮化鎵MESFET之研製與特性量測 Fabrication of GaN MESFET and measurement of characteristics |
指導教授: |
吳孟奇
Meng-Chyi Wu 陳隆建 Lung-Chien Chen 藍文厚 Wen-Hou Lan |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 中文 |
中文關鍵詞: | 氮化鎵 、MESFET 、特性量測 、可靠性 |
外文關鍵詞: | GaN, MESFET, measurement, realiability |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氮化鎵(GaN)因不易成長塊材(bulk),所以目前成長氮化鎵(GaN)的基板(substrate)是以藍寶石(sapphire)為主,此外亦有成長於碳化矽(SiC)的基板上的。因為氮化鎵(GaN)與藍寶石(sapphire)的晶格常數(lattice constant)不匹配,所以會在氮化鎵(GaN)與藍寶石(sapphire)的介面(interface)間產生天然的應力(strain),造成磊晶片的品質不佳,最後導致元件的壽命衰退。不過這個問題一直到1983年,S.Yoshida等人利用分子束磊晶(Molecular Beam Epitaxy,MBE)法,在藍寶石(sapphire)基板(substrate)先成長一層氮化鋁(AlN),即我們俗稱的緩衝層(buffer layer),然後再繼續成長氮化鎵(GaN),可以得到品質較佳的氮化鎵(GaN)薄膜。
氮化鎵(GaN)其較優的特性分別為擁有較大的能隙(bandgap)、較大的飽和速度(saturation velocity)與峰值速度(peak velocity)、較大的崩潰電壓(breakdown voltage)、較大的熱導(thermal conductivity)、對化學藥品的不活潑性(chemical inertness)、 以及其本身擁有的光電特性
本文是利用有機金屬氣相沉積磊晶方式成長氮化鎵材料的磊晶片,製作金屬-半導體場效電晶體。我們利用了鎳/金雙層金屬作為閘極的蕭基接觸電極,鈦/鋁/鈦/金等多層金屬作為汲極與源極的歐姆接觸電極,比較在汲極與源極使用不同的合金條件下,製作出特性較佳的元件。並且討論元件的可靠性問題,藉由元件在300℃高溫條件下長時間燒烤,對元件之蕭基與歐姆接觸的影響變化,觀察元件特性是否退化。此外元件在不同溫度下操作,所呈現的特性趨勢均加以討論。元件照光與不照光對元件特性的影響。
We investigate the reliability of GaN metal semiconductor field effect transistor. The high quality GaN was grown by metal organic chemical vapor deposition (MOCVD). We used Ni/Au as a schottky gate and Ti/Al/Ti/Au as a drain source of GaN MESFET. It was found that the performance of GaN MESFET was not changed after heated at 300℃ for 120m. No degradation of ohmic contact and schottky contact was occurred. The better reliability of GaN MESFET was demonstrated.
[1]Seikoh Yoshida, Joe Suzuki, "Reliability of metal semiconductor field-effect transisitor using GaN at high temperature", J. Appl. Phys., Vol. 84, p. 2940-2942, 1998.
[2]Seikoh Yoshida, Joe Suzuki, "High temperature reliability of GaN metal semiconductor field-effect transisitor and bipolar junction transistor", J. Appl. Phys., Vol. 85, p. 7931-734, 1999.
[3]M. Asif Khan, Michael S. Shur, “GaN based transistors for high temperature applications”, Material Science and Engineering, B46, p.67-73, 1997.
[4]J. Hilsenbeck, E. Nebauer, J. Wurfl, G. Trankle, H. Obloh, “Aging behaviour of AlGaN/GaN HFETs with advanced ohmic and Schottky contacts”, Electronics Letters, Vol. 36, p. 980-981, 2000.
[5]William Liu, “Fundamentals of Ⅲ-Ⅴ devices HBTs, MESFET, and HFETs/HEMTs”, p. 281-322, 1999.
[6]Adarsh, Srikanta Bose, Mridula Gupta, R. S. Gupta, “Analytical Model for DC Characteristics of GaN MESFET Under Dark and Illuminated Conditions”, 2001.
[7]Gerard T. Dang, Anping P. Zhang, Fan Ren, Xianan A. Cao, Hyun Cho, Jung Han, Jenn-Inn Chyi, C. M. Lee, C. C. Chuo, S. N. George, and Robert G. Wilson, “High Voltage GaN Schottky Rectifiers”, IEEE TRANSACTION ON ELECTRON DEVICES, Vol. 47, p. 692-695,2000.
[8]Thorsten U. Kampen, Winfried Monch, “Barrier height of GaN Schottky contacts”, Applied Surface Science”, 117/118, p. 388-393, 1997.
[9]F. Ren, A. P. Zhang, G. T. Dang, X. A. Cao, S. J. Pearton, J. I. Chyi, C. M. Lee, C. C. Chuo, “Surface and bulk leakage currents in high breakdown GaN rectifiers”, Solid-state Electronics, Vol. 44, p. 619-622, 2000.
[10]Hadis Morkoc, “Nitride Semiconductors and Devices”, p. 191-215, 1998.
[11]Donald A. Neamen, “semiconductor physics and devices” p. 307-344,533-580, 1997.
[12]Dieter K. Schroder, “Semiconductor Material and Device Characterization”, p. 133-191, 1998.
[13]郭瑞俊, “n型氮化鎵之金屬接觸及其屬-半導體場效應電晶體之研製”, 碩士論文, 國立交通大學, 1995.
[14]林其淵, “N型氮化鎵之歐姆接觸及其金屬半導體場效電晶體之製作”, 碩士論文, 國立交通大學, 1996.
[15]詹其峰, “氮化鎵金屬-半導體-金屬狀光偵測器之研究”, 碩士論文, 國立海洋大學, 2000.
[16]Sharma, B. L., Plenum Press, “Metal-semiconductor Schottky barrier junctions and their applications”, 1984.