研究生: |
吳凱傑 Wu Kai-Chieh |
---|---|
論文名稱: |
在Mg-9Al-Zn中添加Sn對於微結構與機械性質影響之研究 Effect of Sn addition on the microstructure and mechanical properties of Mg-9Al-Zn alloy |
指導教授: |
葉均蔚
Yeh Jien-Wei |
口試委員: |
葉均蔚
蔡哲瑋 洪健龍 楊智富 曹春暉 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 111 |
中文關鍵詞: | Mg-9Al-Zn-xSn合金 、均質化處理 、預時效 、擠型 、Mg2Sn |
外文關鍵詞: | Mg-9-Al-Zn-xSn alloys, pre-homogenization, pr-aging, extrusion, Mg2Sn |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本研究以商用AZ91鎂合金作為基礎合金,利用添加少量Sn與高擠型比作用,作為發展輕量高強度的鍛造鎂合金Mg-9Al-Zn-xSn (x = 0-3)。Sn添加會形成Mg2Sn析出物抑制鑄造中,共晶相-Mg17Al12形成,這些未能析出的鋁原子,將固溶在α-Mg樹枝相內造成晶格常數縮小,使得XRD曲線呈現繞射峰偏移現象,同時也造成樹枝相溶化溫度降低。利用Mg2Sn析出物,在均質化與預時效兩種熱處理與擠型的多重晶粒細化與抑制晶界移動作用,可以獲得5μm細晶粒的微細結構。對照傳統鑄造AZ91進行同樣均質化與時效處理,添加3wt.%-Sn所產生析出強化與微結構細化作用,其抗拉強度可以到達379 MPa,伸長率仍有7.7% ,但是經預時效後擠型,由於析出物的粗化現象造成延性些微下降。因此,室溫拉伸顯示Mg-9Al-Zn透過預時效後擠型可以獲得較好機械性能,但是添加Sn則是以均質化後擠型在強度與延性擁有較好平衡,其中Mg-9Al-Zn-3Sn的機械性性能最好。此外,細小Mg2Sn析出物在高溫下抑制α-Mg晶粒成長,穩定細晶結構,使合金具超塑性能。但是從超塑性破斷面觀察,細小Mg2Sn析出物阻礙晶界滑移,成為孔隙形成位置,造成在高應變速率具有較低延伸率。從實驗結果計算活化能,Mg-9Al-Zn-3Sn可達到126 kJ/mol.,高於Mg-9Al-Zn的114 kJ/mol.,顯示高含量Sn所形成Mg2Sn同時阻礙晶界滑移,因此在添加1wt.%與2wt.%Sn有較高超塑性性能。
In this study, low-weight, high-strength and ductile wrought Mg-9Al-Zn-xSn (x =1-3) Mg alloys were developed, using a conventional cast AZ91 base alloy specially with the addition of small amounts of Sn and the application of high-ratio extrusion. In the as-cast state, by Sn alloyed, the additional precipitation of Mg2Sn suppressed the homogeneous nucleation of detrimental eutectic -Mg17Al12 but drove the dissolution of more Al into primary -Mg, as verified from the shift of XRD peaks and a lowered liquidus temperature.
In the high-ratio extruded Mg-9-Al-Zn-xSn alloys particularly with 2-3 wt.% Sn and with either pre-homogenization or pre-homogenization/pre-aging, the size of coarse grains was very effectively reduced to only 5 m in consequence of multiplied recrystallization and retarded boundary migration by a large amount of small Mg2Sn precipitates. Compared with a cast or homogenized/aged cast AZ91 alloy, the intense precipitation hardening and the effective microstructure refinement accordingly yielded markedly improved mechanical properties including a high strength of about 379 MPa and elongation of about 7.7%; a slight decrease in ductility was found only in the extruded Mg-9Al-Zn-3Sn alloy with pr-aging due to detrimental precipitate coarsening. These small Mg2Sn particles effectively retarded α-Mg grain growth, which would assist the alloys in retaining fine microstructures and developing high superplasticity. Small particles, in particular Mg2Sn as clearly seen on the fractured surfaces, impeded grain boundary sliding, which would detrimentally induce cavity formation and result in relatively low elongation at high strain rates.
[1] M. M. Avedesian, H. Baker, ASM Specialty Handbook - Magnesium and magnesium alloys, illustrated edition, ASM International, Materials Park (1999) 6-10.
[2] M. K. Kulekci, Magnesium and its alloys applications in automotive industry, The International Journal of Advanced Manufacturing Technology 39 (2008) 851-865.
[3] K. Matsubara, Y. Miyahara, Z. Horita, T. G. Langdon, Developing superplasticity in a magnesium alloy through a combination of extrusion and ECAP, Acta Materialia 51 (2003) 3073-3084.
[4] W. Tang, R. Chen, E. Han, Superplastic behaviors of a Mg-Zn-Y-Zr alloy processed by extrusion and equal channel angular extrusion, Journal of Alloys and Compounds 477 (2009) 636-643.
[5] S.S. Park, W.J. Park, C.H. Kim, B.S. You, N.J. Kim, The twin-roll casting of magnesium alloys, The Journal of The Minerals, Metals and Materials Society 61 (2009) 14-18.
[6] S.W. Lee, H. Y. Wang, Y. L. Chen, J.W. Yeh, C.F. Yang, An Mg-Al-Zn alloy with very high specific strength and superior high-strain-rate superplasticity processed by reciprocating extrusion, Advanced Engineering Materials 6 (2004) 948-952.
[7] S.W. Lee, Y.L. Chen, H.Y. Wang, C.F. Yang, J.W. Yeh, On mechanical properties and superplasticity of Mg-15Al-1Zn alloys processed by reciprocating extrusion, Materials Science Engineering A 464 (2007) 76-84.
[8] H. Askari, J. Young, D Field, G. Kridli, A study of the hot and cold deformation of twin-roll cast magnesium alloy AZ31, Philosophical Magazine 94 (2014) 381-403.
[9] B. Srinivasarao, J. A. del Valle, O. A. Ruano, M. T. Perez-Prado, Influence of thermomechanical processing on the grain size, texture and mechanical properties of Mg-Al alloys, Kovove materialy-metallic materials 50 (2012) 1-23.
[10] D. Lee, The nature of superplastic deformation in Mg-Al eutectic, Acta metallurgica 17 (1969) 1057-1069.
[11] H. Watanabe, T. Mukai, K. Ishikawa, K. Higashi, High-strain-rate superplasticity in an AZ91 magnesium alloy processed by ingot metallurgy route, Materials Transactions 43 (2002) 78-80
[12] Y. Yoshida, K. Arai, S. Itoh, S. Kamado, Y. Kojima, Superplastic deformation of AZ61 magnesium alloy having fine grains, Materials Transactions 45 (2004) 2537-2541.
[13] F. Chai, D. Zhang, W. Zhang, Y. Li, Microstructure evolution during high strain rate tensile deformation of a fine-grained AZ91 magnesium alloy, Materials Science and Engineering A 590 (2014) 80-87.
[14] R. Li, Y. Xu, W. Qi, J. An, Y. Lu, Z. Cao, Y. Liu, Effect of Sn on the microstructure and compressive deformation behavior of the AZ91D aging alloy, Materials characterization 59 (2008) 1643-1649.
[15] R. Mahmudi, S. Moeendarbari, Effects of Sn additions on the microstructure and impression creep behavior of AZ91 magnesium alloy, Materials Science and Engineering A 566 (2013) 30-39.
[16] B. A. Esgandari, H. Mehrjoo, B. Nami, S.M. Miresmaeili, The effect of Ca and RE elements on the precipitates kinetics of Mg17Al12 phase during artificial aging of magnesium alloy AZ91 during artificial aging of magnesium alloy AZ91, Materials Science and Engineering A 528 (2011) 5018-5024.
[17] A. Srinivasan, U.T. Pillai, B.C. Pai, Effects of elemental additions (Si and Sb) on the ageing behavior of AZ91 magnesium alloy, Materials Science and Engineering A 527 (2010) 6543-6550.
[18] Z. Li, J. Dong, X. Zeng, C. Lu, W. Ding, Influence of Mg17Al12 intermetallic compounds on the hot extruded microstructures and mechanical properties of Mg–9Al–1Zn alloy, Materials Science and Engineering A 466 (2007) 134-139.
[19] H.E. Friedrich, B.L. Mordike, Magnesium Technology Metallurgy, Design Data, Applications, Springer Verlag Berlin Heidelberg ( 2006) 1.
[20] W.H. Gross, The story of magnesium, American Society for Metals (1957) 17.
[21] B.B. Clow, Proceedings international conference on magnesium alloys and their applications, Deutsche Gesellschaft für Materialkunde E.V. (1992) 13.
[22] G.V. Raynor, The physical metallurgy of magnesium and its alloys, New York, Pergamon Press (1959) 10.
[23] G.E. Dieter, Mechanical Metallurgy, 3 edition, McGraw-Hill Education, 1986
[24] G. Neite, K. Kubota, K. Higashi, F. Hemann, Materials Science Technology 8 (1996) 113.
[25] J.L. Murray, The Al-Mg (Aluminum-Magnesium) system, Bulletin of Alloy Phase Diagrams 3 (1982) 60-74.
[26] M. Hasegawa, Thermodynamic basis for phase diagrams, Treatise on Process Metallurgy: Process Fundamentals 1 (2014) 527-556.
[27] H. Okamoto, Comment on Mg-Zn (Magnesium-Zinc), Journal of Phase Equilibria 16 (1994) 474-475.
[28] C. Shaw, H. Jones, The contributions of different alloying additions to hardening in rapidly solidified magnesium alloys, Materials Science and Engineering A 226 (1997) 856-860.
[29] H. Okamoto, Mg-Mn (Magnesium-Manganese), Journal of Phase Equilibria and Diffusion 29 (2008) 208-209.
[30] A. A. Nayeb-Hashemi, J. B. Clark, The Mg−Nd system, Bulletin of Alloy Phase Diagrams 9 (1988) 618-623.
[31] A. Luo, M.O. Pekguleryuz, Review cast magnesium alloys for elevated temperature applications, Journal of Materials Science 29 (1994) 5259-5271.
[32] J.C. McDonald, Tensile properties of rolled magnesium alloys, I - Binary alloys with aluminum, antimony, bismuth, cadmium, copper, lead, nickel, silver, thallium, tin and zinc, Transactions of The American Institute of Mining and Metallurgical Engineers 137 (1940) 430-441.
[33] J.C. McDonald, Tensile properties of rolled magnesium alloys - Binary alloys with calcium, cerium, gallium, and thorium, Transactions of The American Institute of Mining and Metallurgical Engineers 143 (1941) 179-182.
[34] D. Shin, C. Wolverton, First-principles study of solute–vacancy binding in magnesium, Acta Materialia 58 (2010) 531-540.
[35] J. B. Clark, Age hardening in a Mg-9 wt% Al alloy, Acta Metallurgica 16 (1968) 141-152.
[36] K. Oh-ishi, K. Hono, K.S. Shin, Effect of pre-aging and Al addition on age-hardening and microstructure in Mg-6 wt% Zn alloys, Materials Science and Engineering A 496 (2008) 425-433.
[37] J. C. Rao, M. Song, K. Furuya, TEM study of Mg-Zn precipitates in Mg-Zn-Y alloys, Journal of Materials Science 41 (2006) 2573-2576.
[38] M. Matsuda, S. Iib, Y. Kawamura, Y. Ikuhara, M. Nishida, Variation of long-period stacking order structures in rapidly solidified Mg97Zn1Y2 alloy, Materials Science and Engineering A 393 (2005) 269-274.
[39] J.F. Nie, B. C. Muddle, Characterisation of strengthening precipitate phases in a Mg-Y-Nd alloy, Acta Materialia 48 (2000) 1691-1703.
[40] Y.M. Zhu, A.J. Morton, J.F. Nie,Improvement in the age-hardening response of Mg-Y-Zn alloys by Ag additions ,Scripta Materialia 58 (2008) 525-528
[41] D. Li, Q. Wang, W. Ding, Precipitate phases in the Mg-4Y-4Sm-0.5Zr alloy, Journal of Alloys and Compounds 465 (2008) 119-126.
[42] Q. Peng, H. Dong, Y. Wu, L. Wang, Age hardening and mechanical properties of Mg-Gd-Er alloy, Journal of Alloys and Compounds 456 (2008) 395-399.
[43] S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, W.J. Ding, Microstructure and strengthening mechanism of high strength Mg-10Gd-2Y-0.5Zr alloy, Journal of Alloys and Compounds 427 (2007) 316-323.
[44] D. Duly, J. P. Simon and Y. Brechet, On the competition between continuous and discontinuous precipitations in binary Mg-Al alloys, Acta Metallurgica et Materialia 43 (1995) 101-106.
[45] S. Celotto, TEM study of continuous precipitation in Mg-9 wt% Al-1 wt% Zn alloy, Acta Metallurgica 48 (2000) 1775-1787.
[46] K.N. Braszczynska-Malik, Discontinuous and continuous precipitation in magnesium - aluminium type alloys, Journal of Alloys and Compounds 477 (2009) 870-876.
[47] F. Findik, Discontinuous (cellular) precipitation, Journal of Materials Science Letters 17 (1998) 79-83.
[48] J. D. Eshelby, F. C. Frank, F. R. N. Nabarro, XLI. The equilibrium of linear arrays of dislocations, Philosophical Magazine 42 (1951) 351-364.
[49] G.D. Bengough, A study of the properties of alloys at high temperatures, Journal of the Institute of Metals 7 (1912) 123-174.
[50] C.H.M. Jenkins, Strength of Cd-Zn and Sn-Pb alloy solder, Journal of the Institute of Metals 40 (1928) 21-32.
[51] C.E. Pearson Viscous properties of extruded eutectic alloys of Pb-Sn and Bi-Sn, Journal of the Institute of Metals 54 (1934) 111-123.
[52] E.E. Underwood, A review of superplasticity in an Al-Zn alloy, Journal of Metals 14 (1962) 914-919.
[53] W.A. Backofen, D.H. Avery, and J.R. Turner, Superplasticity in Al-Zn Alloy, Transactions: American Society for Metals 57 (1964) 980-990.
[54] A. Karim, D. L. Holt, W.A. Backofen, Diffusional creep and superplasticity in a Mg-6Zn-0.5Zr alloy, Transactions of the Metallurgical Society of AIME 245 (1969) 1131-1132.
[55] A. Karim, W.A. Backofen, Grain sizes dependence of Strain-rate hardening behavior in a Mg-Zn-Zr alloy, Materials Science and Engineering 3 (1969) 306-307.
[56] M. Mabuchi, K. Kubota, K. Higashi, High strength and high strain rate superplasticity in a Mg-Mg2Si composite, Scripta Metallurgica et Materialia 33 (1995) 331-335.
[57] 陸樹蓀 顧開道 鄭來蘇,有色鑄造合金及熔煉,國防工業出版社(1983) 91.
[58] D. Daloz, G. Michot, P. Steinmetz, Mechanical properties of rapidly solidified Mg-Al-Zn alloys, International Journal of Rapid Solidification 9 (1996) 171-186.
[59] A.J. Barnes, Superplastic Forming 40 Years and Still Growing, Journal of Materials Engineering and Performance 22 ( 2013) 2935-2949A.K. Mukherjee, J.E. Bird, J.E Dorn, Experimental correlations for high-temperature creep, ASM Transactions Quarterly 62 (1969) 155-179.
[60] R.W. Lund, W.D. Nix, High creep activation-energies for dispersion strengthened metals, Metallurgical Transactions A - Physical Metallurgy and Materials Science 6 (1975)1329-1333.
[61] T.G. Nieh, J. Wadsworth, O.D. Sherby, Superplasticity in metals and ceramics, Cambridge University Press (1997) 38-39.
[62] W.J. Kim, S.W. Chung, C.S. Chung, D. Kum, Superplasticity in thin magnesium alloy sheets and deformation mechanism maps for magnesium alloys at elevated temperatures Acta Materialia 49 (2001) 3337-3345.
[63] J. Pilling and N. Ridley, Superplasticity in crystalline solids, Institute of Metals (1989) 10-12.
[64] O. D. Sherby, J. Wadsworth, Superplasticity - Recent advances and future directions, Progress in Materials Science 33 (1989) 169-221.
[65] H. K. Lin, J. C. Huang, High Strain Rate and/or Low Temperature Superplasticity in AZ31 Mg Alloys Processed by Simple High-Ratio Extrusion Methods, Materials Transactions 43 (2002) 2424-2432.
[66] H. Watanabe, T. Mukai, K. Ishikawa, K. Higashi, High-strain-rate superplasticity in an AZ91 magnesium alloy processed by ingot metallurgy route, Materials Transactions 43 (2002) 78-80.
[67] C. Xu, M. Furukawa, Z. Horita, T.G. Langdon, Achieving a superplastic forming capability through severe plastic deformation, Advanced Engineering Materials 5 (2003) 359-364.
[68] Y.H. Wei, Q.D. Wang, Y.P. Zhu, H.T. Zhou, W.J. Ding, Y. Chino, M. Mabuchi, Superplasticity and grain boundary sliding in rolled AZ91 magnesium alloy at high strain rates, Materials Science and Engineering A360 (2003) 107-115.
[69] W.J. Kim, I.K. Moon, S.H. Han, Ultrafine-grained Mg–Zn–Zr alloy with high strength and high-strain-rate superplasticity, Materials Science and Engineering A 538 (2012) 374-85.
[70] F. Chai, D. Zhang, W. Zhang,Y. Li, Microstructure evolution during high strain rate tensile deformation of a fine-grained AZ91 magnesium alloy, Materials Science and Engineering A 590 (2014) 80-87.
[71] M. Mabuchi, K. Ameyama, H. Iwasaki, K. Higashi, Low temperature superplasticity of AZ91 magnesium alloy with non-equilibrium grain boundaries, Acta Materialia 47 (1999) 2047-2057.
[72] H. Watanabe, T. Mukai, Superplasticity in a ZK60 magnesium alloy at low temperatures, Scripta Materialia 40 (1999) 477-484.
[73] H. Watanabe, T. Mukai, M. Mabuchi, K. Higashi, High-strain-rate superplasticity at low temperature in a ZK61 magnesium alloy produced by powder metallurgy, Scripta Materialia 41 (1999) 209-213.
[74] H. Watanabe, T. Mukai, T. G. Nieh , K. Higashi, Low temperature superplasticity in a magnesium-based composite, Scripta Materialia 42 (2000) 249-255
[75] Y. Yoshida, L. Cisar, S. Kamado, Y. Kojima, Low Temperature Superplasticity of ECAE Processed Mg-10%Li-1%Zn Alloy, Materials Transactions 43 (2002) 2419-2423.
[76] M. Mabuchi, T. Asahina, H. Iwasaki, K. Higashi, Experimental investigation of superplastic behaviour in magnesium alloys, Materials Science and Technology 13 (1997) 825-831.
[77] H. Watanabe, T. Mukai, M. Mabuchi and K. Higashi, Superplastic deformation mechanism in powder metallurgy magnesium alloys and composites, Acta Materialia 49 (2001) 2027-2037.
[78] Z. Ma, F. Liu, R.S. Mishra, Superplastic deformation mechanism of an ultrafine-grained aluminum alloy produced by friction stir processing, Acta Materialia 58 (2010) 4693-4704.
[79] I. Hsiao, J. Huang, Deformation Mechanisms during Low- and High-Temperature Superplasticity in 5083 Al-Mg Alloy, Metallurgical and Materials Transactions A 33 (2002) 1373-1384
[80] N.J. Petch, The cleavage strength of polycrystals, The Journal of the Iron and Steel Institute, London 174 (1953) 25-28.
[81] J. A. Chapman and D. V. Wilson, Room-temperature ductility of fine-grain magnesium, Journal of the Institute of Metals 91 (1962) 35-39.
[82] V. Otto, Fundamentals of extrusion, Candy Industry (2008).
[83] E. Totten, D. Mackenzie, Handbook of Aluminum: Physical Metallurgy and Processes Volume 1 (2003) 385-480.
[84] 龔仁傑,往復式擠型法回收鎂合金廢料之研究,國立清華大學材料科學工程研究所碩士論文,2001.
[85] 張榮桂,利用往復式製作超塑性AZ91鎂合金之研究,國立清華大學材料科學工程研究所碩士論文,2000.
[86] 劉家穎,利用往復式擠型法擠製超塑性AS21鎂合金之研究,國立清華大學材料科學工程研究所碩士論文,2001.
[87] 汪曉芸,利用往復式擠型法開發高性能Mg-Al-Zn鎂合金之研究 ,國立清華大學材料科學工程研究所碩士論文,2004
[88] 李士瑋,以往復式擠型法改善鋁合金/鎂合金機械性質及超塑性行為之研究,國立清華大學材料科學工程研究所博士論文,2006.
[89] 黃耀新,利用往復式擠型法及高鋁含量改善AZ系列鎂合金超塑性與成型性之研究,國立清華大學材料科學工程研究所碩士論文,2007.
[90] V.M. Segal, V.I. Reznikov, A.E. Drobyshevskiy, V.I. Kopylov, Plastic working of metals by simple shear, Russian Metallurgy 1 (1981) 99.
[91] Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, T.G. Langdon, Principle of equal-channel angular pressing for the processing of ultra-fine grained materials, Scripta Materialia 35 (1996) 143-146.
[92] J. Richert, M. Richert,A New Method for Unlimited Deformation of Metals and Alloys, Aluminum 62 (1986) 604-607.
[93] W. H. Huang, L. Chang, P. W. Kao, C. P. Chang, Effect of die angle on the deformation texture of copper processed by equal channel angular extrusion, Materials Science and Engineering A 307 (2001) 113-118.
[94] R. Thiyagarajan, A. Gopinath, Enhancement of Mechanical Properties of AA 6351 Using Equal Channel Angular Extrusion (ECAE), Materials Science and Metallurgy Engineering 2 (2014) 26-30.
[95] V. M. Segal, Materials Processing by Simple Shear, Materials Science and Engineering A 197 (1995) 157-164.
[96] 張瑋倫,高強韌、高擠速Mg-Al-Zn-xCa-ySn合金開發,國立清華大學材料科學工程研究所碩士論文,2011.
[97] ASTM Standards : E 8 Test Methods for Tension Testing of Metallic Materials, 13-14.
[98] H. Liang, S.L. Chen, Y.A. Chang, A thermodynamic description of the Al-Mg-Zn system, Metallurgical and Materials Transactions A 28 (1997) 1997-1725.
[99] E. Doernberg, A. Kozlov, and R. Schmid-Fetzer, Experimental investigation and thermodynamic calculation of Mg-Al-Sn phase equilibria and solidification microstructures, Journal of Phase Equilibria and Diffusion 28 (2007) 523-535.
[100] Masakatsu Hasegawa, Thermodynamic basis for phase diagrams, Treatise on Process Metallurgy: Process Fundamentals 1 (2014) 527-556.
[101] F. A. Hummel, Introduction to Phase Equilibria in Ceramic Systems, CRC Press, New York (1984).
[102] D.H. StJohn, A.K. Dahle, T. Abbott, M.D. Nave, M. Qian, Solidification of cast magnesium alloys, Magnesium Technology 2003 (2003) 95-100.
[103] Mohammad Mezbahul-Islam, Ahmad Omar Mostafa, and Mamoun Medraj, Essential Magnesium Alloys Binary Phase Diagrams and Their Thermochemical Data, Journal of Materials 2014 (2014) 1-33.
[104] R.G. Li, Y. Xu, W. Qi, J. An, Y. Lu, Z.Y. Cao, Y.B. Liu, Effect of Sn on the microstructure and compressive deformation behavior of the AZ91D aging alloy, Materials characterization 59 (2008) 1643-1649.
[105] R. Mahmudin, S. Moeendarbari, Effects of Sn additions on the microstructure and impression creep behavior of AZ91 magnesium alloy, Materials Science and Engineering A 566 (2013) 30-39.
[106] I.C. Jung, Y.K. Kim, T.H. Cho1, S.H. Oh, T.E. Kim, S.W. Shon, W.T. Kim, D.H. Kim, Suppression of Discontinuous Precipitation in AZ91 by Addition of Sn, Metals and Materials International 20 (2014) 99-103.
[107] R.E. Reed Hill, R. Abbaschian, Physical metallurgy principles (3rd ed.), PWS Publishing, Boston, MA, 1994
[108] A. Bag, W. Zhou, Tensile and fatigue behavior of AZ91D magnesium alloy, Journal of Materials Science Letters 20 (2001) 457-459.
[109] K. Zhang, D. Yin, G. Wang, W. Han, Cavitation Behavior during Superplastic Deformation of AZ31 Magnesium Alloy, Journal of Materials Science and Technology 21 (2005) 510-513.
[110] C. Lee, J. Huang, Cavitation characteristics in AZ31 Mg alloys during LTSP or HSRSP, Acta Materialia 52 (2004) 3111-3122.
[111] Y.N. Wang, J.C. Hunang,Transition of dominant diffusion process during superplastic deformation in AZ61 magnesium alloys, Metallurgical and Materials Transactions A 35 (2004) 555-562.