研究生: |
顧明杰 |
---|---|
論文名稱: |
使用已知生物資訊探索轉錄調控網路 |
指導教授: |
徐祖安
鄭西顯 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 61 |
中文關鍵詞: | 轉錄調控 、生物網路 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
為了瞭解生物遺傳資訊DNA,其中一個最主要目標就是有系統地研究轉錄調控網路(Transcriptional regulatory network ,TRN)。因為不論任何細胞、生物都是靠著功能基因表現控制著生長、發育、遺傳、行為及疾病等等生理現象及生化反應。因此要在眾多的基因中,找出其功能性、相關性,如何被調控表現或抑制,是後基因體時代最重要的研究工作之一。最常用的方法為使用染色體免疫沉澱晶片來探索調控網路網架構。染色體免疫沉澱晶片雖然可以提供部份資訊,但其提供的訊息確不一定準確,因為有時雖然轉錄因子會與此基因有聯接,但轉錄因子確不會有任何功能,也就是不會有轉錄的現象發生。而且染色體免疫沉澱晶片技術需要準備蛋白質抗體,還要做一組基因晶片,所需的成本很高,所以不是每一個實驗環境或實驗物種都有染色體免疫沉澱晶片可以使用。
綜合以上的問題,本文之目的是發展出一個以部分文獻已知的網路結構和DNA微陣列晶片數據,基於網路結構最大離散度的理論,及NCM限制條件,以混合整數的非線性最佳化方法,基因演算法(Genetic algorithm),推論出一種類似染色體免疫沉澱晶片的基因調控網路架構,以提供生物學家在只有DNA微陣列晶片數據或做染色體免疫沉澱晶片實驗之前可參考的數據。我們將先以合成數據做測試,並嘗試用在真實DNA微陣列晶片數據中。
Reference
[1]. Hieter, P. and Boguski, M., (1997) Functional Genomics: It’s all how you read it. Science, 278, 601-602
[2]. Eisenberg, D. et al., (2000) Protein function in the post-genomic era. Nature, 405,823-826
[3]. Leung, Y.F. and Cavalieri, D., (2003) Fundamental cDNA microarray data analysis. Trends in genetics, 19(11), 649-659
[4]. Bing , R .et al., (2000) Genome-Wide Location and Function of DNA. Science, 290, 2306-2309.
[5]. V. Orlando, (2000) Mapping chromosomal proteins in vivo by formaldehyde crosslinked- chromatin immunoprecipitation . Trends Biochem. Sci. 25, 99-104.
[6]. Gardner, T. S. and J. J. Faith, (2005) Reverse-engineering transcription control networks. Phys. Life Rev., 2, 65-88.
[7]. M Madan Badu.et al., (2004) Structure and evolution of transcriptional regulatory networks. Current Opinion in Structure Biology, 14, 283-291.
[8]. A.Blais and Dynlacht, B. D., (2005) Constructing transcriptional regulatory networks. Gene&Dev, 19, 1499-1511.
[9]. Albertha J.M. Walhout., (2006) Unraveling transcription regulatory networks by protein-DNA and protein-protein interaction mapping. Genome Res, 16, 1445-1454.
[10]. K.-H.Cho .et al., (2007) Reverse engineering of gene regulatory networks.IET Syst. Biol, 3, 149-163
[11]. Brazhnik, P., de la Fuente, A., and Mendes, (2002) P., Gene networks: how to put the function in genomics, Trends Biotechnol., 20,pp. 467–472
[12]. De Jong, H., (2002) Modeling and simulation of genetic regulatory systems :a literature review, J. Comput. Biol., 9, pp. 67–103
[13]. Alter, O.et al., (2000) Singular value decomposition for genome-wide expression data processing and modeling. Proc. Natl. Acad. Sci. U S A. 97, 10101-10106.
[14]. Lee, S. I. and S. Batzoglou, (2003) Application of independent component analysis to microarrays. Genome Biol. 4, R76.
[15]. Liebermeister, W.(2002) Linear modes of gene expression determined by independent component analysis. Bioinformatics. 18, 51-60.
[16]. Brynildsen, M. P. et al., (2007) Biological Network Mapping and Source Signal Deduction. Bioinformatics. Advance Access published May 11
[17]. Brynildsen, M. P, et al. (2006) Versatility and Connectivity Efficiency of Bipartite Transcription Networks. Biophysical journal.91,2749-2759.
[18]. Liao, J. C. et al., (2003) Network component analysis: reconstruction of regulatory signals in biological systems. Proc. Natl. Acad. Sci. U S A, 100, 15522-15527.
[19]. Boulesteix, A. L. and Strimmer, K., (2005) Predicting transcription factor activities from combined analysis of microarray and ChIP data: a partial least squares approach. Theoretical Biology and Medical Modelling, 2, 23-34.
[20]. Sabatti, C. and G. M. James (2006) Bayesian sparse hidden components analysis for transcription regulation networks. Bioinformatics, 22, 739-746.
[21]. Li, Z. et al., (2006) Using a state-space model with hidden variables to infer transcription factor activities. Bioinformatics, 22, 747-754
[22]. Sanguinetti, G. et al., (2006) Probabilistic inference of transcription factor concentrations and gene-specific regulatory activities. Bioinformatics, 22, 2775-2781.
[23]. Bussemaker, H. J. et al., (2001) Regulatory element detection using correlation with expression. Nat. Genet., 27, 167-171.
[24]. Gao, F. et al., (2004) Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data. BMC Bioinformatics. 5, 31.
[25]. Qiu, P. (2003) Recent advances in computational promoter analysis in understanding the transcriptional regulatory network, Biochem.Biophys. Res. Commun, 19, 495-501
[26]. Xu, X, E et al., (2004) Learning module networks from genome-wide location and expression data, FEBS, 578, 297-304
[27]. Yu, T. and Li, K. C., (2005) Inference of transcriptional regulatory network by two-stage constrained space factor analysis. Bioinformatics, 21, 4033-4038
[28]. Tran, L. M. et al., (2005) gNCA: a framework for determining transcription factor activity based on transcriptome: identifiability and numerical implementation. Metab. Eng., 7, 128-141.
[29]. Wahde, M. and Hertz, J., (2000) Coarse-grained reverse engineering of genetic regulatory networks. BioSystems, 55, 129-136
[30]. Repsilber, D. et al., (2002) Reverse engineering of regulatory networks : simulation studies on a genetic algorithm approach for ranking hypotheses, BioSystems, 66, pp. 31-41
[31]. Husmeier,D. (2003) Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks . Bioinformatics, 23,2271-2282
[32]. Brynildsen, M. P. et al., (2006) A Gibbs sampler for the identification of gene expression and network connectivity consistency. Bioinformatics, 22,3040-3046
[33]. Lyons, T. J. et al., (2000) Genome-wide characterization of the Zap1p zinic-responsive regulon in yeast . Proc. Natl. Acad. Sci.USA . 97,7957-7962
[34]. Gasch, A. P. et al., (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell., 11, 4241-4257