簡易檢索 / 詳目顯示

研究生: 洪士庭
Shih-Ting Hung
論文名稱: 研製次波長結構之負折射率光子晶體透鏡及太陽能電池抗反射層
The study of negative refraction photonic crystals lens and the antireflection layers of solar cell in subwavelength structure
指導教授: 朱鐵吉
Tieh-Chi Chu
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 124
中文關鍵詞: 負折射率光子晶體抗反射層
外文關鍵詞: negative refraction, photonic crystal, antireflection layer
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於近年來奈米製程技術的發展,拓寬了光子晶體與光電元件製作的能帶應用波段,從微波減小到紅外光及可見光,使應用的層面更加廣泛與實際。更重要的是,奈米技術的發展可以大幅縮小元件的體積,並從事更精密的積體電路製程。
    本篇論文的主旨在於製作次波長結構之光電元件,主要分為下列三個研究方向 (1)利用HDPCVD(High Density Plasma Chemical Vapor Deposition)來改良傳統自行衍生技術製作之二維自行衍生光子晶體波導,以期研發出一製作簡易、可複製性與彈性更高的光子晶體製程。(2)利用化學氣相沉積法製作太陽能電池之抗反射層結構。(3)以模擬的方式研究負折射率現象及製作負折射率透鏡。
    實驗結果成功的利用HDPCVD的自行衍生方法製作出二維光子晶體波導與太陽能電池之抗反射層,並有別於一般利用高折射率材料來研究負折射率現象,本論文中利用低折射率與低消光係數材料SU8成功的模擬出負折射率現象且將其結果運用到透鏡的製作上,在實驗當中得到了許多特殊的光學分析結果,亦發現了這些不同型態光電元件的特性與應用價值。


    Owing to the vigorous development of nano-technology, the bandgap region of photonic crystals or electro-optical devices can be shifted from microwave to infrared or visible light and applications of photonic crystals(PBG) are more extensively and practically. Nano-technology can apply to fabricate many kinds of novel electro-optical devices. Most importantly, it can reduce the volume of these devices substantially and thus will be engaged in highly concentrated integration of electro-optical devices.
    In this thesis, we study three kinds of subwavelength structure electro-optical devices. First, we use HDPCVD(High Density Plasma Chemical Vapor Deposition) to improve conventional autocloning method and expect to fabricate 2-D PCs waveguide by simpler, reproducible and flexible process. Second, we use autocloning method to fabricate the antireflection layer of solar cell. We also discuss negative refraction lens in this study.
    We successfully fabricate 2-D PCs waveguide and the antireflection layer of solar cell by using autocloning method. We also use 2D FDTD(Finite-difference time-domain) to simulate negative refraction phenomenon of low-index material, and apply to the fabrication of negative refraction lens. Many characteristics of electro-optical devices are obtained and the valuable applications are also analyzed.

    總目錄 中文摘要………………………………………………………….…..…i 英文摘要………………………………………………………….......…ii 誌謝……………………………………………………………….…….iii 總目錄……………………………………………………………....…..iv 表目錄……………………………………………………………...…..vii 圖目錄…………………………………………………………....……viii 第一章 緒論……………………………………………………………1 1-1 研究動機與目的…………………………………………………….1 1-2 論文架構…………………………………………………………….3 第二章 文獻回顧………………………………...….…………………5 2-1 光子晶體簡介……………………………..………………………...5 2-1.1 概念與發現………………………..……………………….….5 2-1.2 理論計算………………………..……………………………..6 2-1.3 新現象及應用…………………………………………………8 2-2 現階段二維及三維光子晶體各式製程之比較………………….....9 2-3 傳統自行衍生法之製程優勢及其應用發展……………………...12 2-3.1 傳統自行衍生法之機制探討………………………………12 2-3.2 2-D 自行衍生光子晶體……………………………………15 2-3.3 3-D 自行衍生光子晶體……………………………………17 2-4 負折射率簡介 ……………………………..…………………….. 20 第三章 利用高密度電漿化學氣相沉積法(HDPCVD) 製作二維自行衍生光子晶體波導及其機制探討………….……..…...………………39 3-1研究動機與方向…………………………..……..………....39 3-1.1階梯覆蓋率的改良方法………………………………………39 3-1.2 HDPCVD之特性與離子轟擊………………………………42 3-2實驗藥品與設備、製程相關參數及實驗步驟……………………45 3-2.1 實驗藥品與設備……………………………………..…….…45 3-2.2 製程相關參數設定…………………………………………...46 3-2.3 實驗步驟……………………………………………………...47 3-3製作二維光子晶體波導………… …………...................................49 3-3.1改變波導的圖形結構…………… ………… ………..………49 3-3.2改變底材的圖形結構………… ………… ……………..……50 3-3.3改變堆疊時的RF偏壓………………………………..………51 3-4 結論…………………… ……… ………………… …..…………..52 第四章 自行衍生光子晶體的光學特性量測與分析應用……..……64 4-1研究動機與目的……………………………………………………64 4-2實驗藥品與設備、實驗步驟及製程參數…………………………66 4-2.1實驗藥品與設備……… …………………………… ………66 4-2.2實驗步驟及製程參數………………………… …… ………66 4-3設計多層膜之抗反射層結構……………………………………...68 4-3.1多層膜設計……… ………………………………… ………68 4-3.2多層膜設計之模擬與最佳化…………………………………68 4-4製作多層膜之抗反射層結構………………………………………70 4-4.1 二維抗反射層結構…………………… ……………………70 4-4.2 三維抗反射層結構… ……… ………………… …………70 4-5 量測結果分析與討論……………………………………………71 4-5.1 多層膜的抗反射層…………………………………………71 4-5.2 二維的抗反射層結構………………………………………72 4-5.3 三維的抗反射層結構………………………………………73 4-6 結論………………………………………………………………75 第五章 光子晶體之負折射率現象的研究與探討………………….88 5-0何謂負折射率……………………………………………………..88 5-1研究動機與方向…………………………………………………..89 5-2實驗原理與步驟………………………………………………….90 5-3 利用負折射率現象增強光傳遞的能量………………………….92 5-4多模態入射光之聚焦…………………………………………….94 5-5 結論…………………… …………………… ……… ………….99 第六章 結論………………………………………………………….115 6-1利用HDPCVD改善傳統自行衍生法來製作光子晶體波導…….115 6-2 利用HDPCVD配合多層膜之原理製造多層膜之金字塔抗反射層結構………………………………………. ……. ……. …………….116 6-3 光子晶體負折射率現象之研究與探討…… …… …….……….117 參考文獻………………………………………………..……...……...119 表目錄 表3-2.3.1 ECR多晶矽蝕刻系統製程參數表…………………………54 表3-2.3.2 HDPCVD 高密度電漿化學氣相沉積系統製程參數表…...54 表4-2.2.1 ECR多晶矽蝕刻系統製程參數表…………………………79 表4-2.2.2 HDPCVD 高密度電漿化學氣相沉積系統製程參數表…..79 表5-2.1 模擬實驗中預設的參數值…………………………………100 表5-3.1 改變不同頻率ω時所對應之負折射率聚焦位置…………100 圖目錄 圖2-2.1 利用層疊法製作之各種柴堆式結構 (a)矽棒柴堆結構(b)鎢棒柴堆結構(c)MIT設計新穎之層疊結構(d)利用奈米微粒小球進行微組裝操作之層疊結構……………………..24 圖2-2.2 利用自組裝法(self-assembly)製作之(a)珍珠結構(b)反相珍珠結構……………………………………………………...25 圖2-2.3 利用電化學結合聚焦離子束蝕刻製作之f.c.c微孔洞結構...26 圖2-2.4 利用GLAD法製作之螺旋狀結構…………………………..26 圖2-2.5 利用異量分子聚合物自行分離堆積(block copolymer)出各種週期性陣列結構(a)一維層狀結構(b)二維週期性結構 (c)各種可能的晶格結構………………………………………...27 圖2-2.6 利用Two-photon全像微影法製作之各式三維光子晶體…..27 圖2-3.1.1 間隙之到達角度示意圖(a)方形間隙窗口(b)錐形間隙窗口…………..……………………………………………..28 圖 2-3.1.2 傳統自行衍生法的自體成形機制[51](a)擴散沉積(b)濺射蝕刻(c)再沉積作用…………………….…………………28 圖 2-3.1.3 (a)薄膜濺鍍沉積導致陰影效應(shadowing effect)示意圖(b)經濺射蝕刻及再沉積現象後穩定的波浪狀結構形成...29 圖2-3.1.4 利用自行衍生法堆疊的二維及三維週期性塊材...……...29 圖2-3.1.5 自行衍生法的自體癒合效應(Self-healing effect)………...29 圖2-3.2.1 二維自行衍生光子晶體(a)能帶結構(b)週期與有效折射率的關係圖(c)兩種Lattice-modulated的型態……...30 圖2-3.2.2 二維自行衍生光子晶體的應用(a)波導或光耦合器(b)共振腔(c)平板透鏡(d)偏極器或偏振片……………….31 圖2-3.3.1 (a)Yablonoitch 提出的標準三維週期性光子晶體塊材(b)其能帶結構並無法造成全能隙…………………………..32 圖2-3.3.2 三維自行衍生光子晶體的應用(a)線缺陷垂直波導(b)可調式波長多工濾波器(c)3D/2D/3D cross-dimensional PC可大大的提昇二維光子晶體第三維方向上的光侷限性………………………………………………………...33 圖2-3.3.3 超稜鏡現象(a)super-dispersion 及ultra- refraction(b)晶格結構(c)色散表面圖……………………………….34 圖2-4.1 Poynting vector方向與波向量在(a)右手物質(b)左手物質。個別的方向關係示意圖………………………………….36 圖2-4.2 (a)一般折射率現象(b)負折射率現象……………….36 圖2-4.3利用平塊成像原理使點光源通過負折射率物質後光聚焦的情形………………………………… ………………… ……...37 圖2-4.4 (a)透鏡原理。(b)平面波的穿透行為………… ……...37 圖2-4.5 非負折射率的結果……………… … ……………… ……...38 圖2-4.6 利用平面波對一平塊物質穿透行為的方式之負折射率現象...38 圖 3-1.1.1 間隙之到達角度示意圖(a)方形窗口(b)錐形窗口…55 圖 3-1.2.1 ICP反應室示意圖………………………………………. 55 圖 3-1.2.2 本論文所使用ICP-HDPCVD配備及操作介面示意圖…56 圖 3-1.2.3 利用HDPCVD進行自行衍生法的自體成形機制(a)氣相源材料穿越電漿邊界層到達基板表面並被吸附,被吸附的源材料會在基片表面上移動(b)源材料在晶圓表面發生化學反應,形成固態材料並釋放氣態副產品,少數固態材料分子在表面生成晶核(nuclei),晶核進一步形成島狀物 (island)(c)島狀物漸漸成長合併成連續的薄膜(d)重度離子轟擊以達到濺射蝕刻與階梯轉角削除(e)交替薄膜由底部成長而上沉積(f)波浪狀自行衍生光子晶體成形………………………………………………………57 圖3-3.1 本論文中所使用之波導結構示意圖……… ………… ……58 圖3-3.1.1 不同底材圖形之波導示意圖(a)光子晶體結構中設計兩條3μm之波導(b)光子晶體結構中設計一條1μm之波導(c)光子晶體結構中設計一條100μm∼3μm漸變結構之波導…...59 圖3-3.2.1 週期0.5μm線寬為0.2μm的結構………………………61 圖3-3.2.2 週期1μm線寬0.3μm的結構………………………… …61 圖3-3.2.3 間隙過大導致堆疊後平坦之情形…………………………62 圖3-3.2.4 在週期0.5μm線寬0.2μm的光子晶體上堆疊1μm之a-Si…62 圖3-3.3.1 不同偏壓在光子晶體結構上堆疊厚的a-Si之SEM圖 (a)Bias=400w(b)Bias=300w……………………….63 圖4-1.1 傳統太陽能電池製作流程………………………………….80 圖4-1.2 太陽能電池中光能轉變成電能示意圖……………… ……81 圖4-1.3 利用HDPCVD自行衍生法製作太陽能電池流程… … …81 圖4-3.1.1 175nm(二分之一波長)的Si3N4與116nm(四分之一波長)的SiO2之反射率模擬圖……………………………………82 圖4-3.1.2 87.5nm(四分之一波長)的Si3N4與116nm(四分之一波長)的SiO2之反射率模擬圖……………………………………82 圖4-3.2.1 238nm的Si3N4與109nm的SiO2厚度最佳後的反射率模擬圖……………………………………………………………83 圖4-4.1.1 二維抗反射層結構之SEM圖………………………..……83 圖4-4.1.2 三維抗反射層結構之SEM圖………………………..……84 圖4-5.1.1 一般Si晶片的反射率圖示…………………………………84 圖4-5.1.2(a)利用HDPCVD堆疊87.5nm的Si3N4與116nmSiO2後量測的反射率對波長作圖(b)利用HDPCVD堆疊238nm的Si3N4與109nmSiO2後量測的反射率對波長作圖……………………………………………………………85 圖4-5.2.2 堆疊238nm的Si3N4與109nm的SiO2與尚未堆疊之一維柵狀結構反射率比較。(方塊圖為尚未堆疊之一維柵狀結構,圓形為堆疊多層膜後的結果)……………………………86 圖4-5.2.3 堆疊87.5nm的Si3N4與116nm的SiO2與尚未堆疊之一維柵狀結構反射率比較。(方塊圖為尚未堆疊之一維柵狀結構,圓形圖為堆疊多層膜後的結果)…………………………86 圖4-5.3.1 二維六角孔洞結構與堆疊最佳化多層膜結構後的反射率比較圖。(方形圖為二維六角孔洞結構,圓形圖為堆疊多層膜後的結構)…………………………………………………87 圖4-5.3.2 二維六角孔洞結構與堆疊四分之一波長之多層膜結構後的反射率比較圖。(方形圖為二維六角孔洞結構,圓形圖為堆疊多層膜後的結構)………………………………………87 圖5-0.1 折射率示意圖(a)為一般折射率(b)負折射率現象………101 圖5-0.2 同時擁有負的電極率ε(Permittivity)與負的磁化率μ(Permeability)時,能流方向與波向量方向的示意圖……101 圖5-0.3 能流方向與波向量方向的關係,J為能流方向、k為波向量。(a)一般折射率,J與k同向(b)負折射率,J與k反向……102 圖5-0.4 (a)點光源通過正折射率物質後發散的情形。(b)點光源通過負折射率物質後光聚焦的情形……… ………… …102 圖5-0.5 (a)透鏡原理。(b)平面波的穿透行為………………………103 圖5-2.1 模擬負折射率現象的結構示意圖…………………………103 圖5-2.2 能譜中出現負折射率現象的位置圖示………… …………104 圖5-2.3 Brillouin zone & 波向量k……………………………………104 圖5-3.1 光通過波導在空氣中發散的情形…………………………105 圖5-3.2 頻率為0.74時,光聚焦與傳遞的情形……………………105 圖5-3.3 不同的頻率ω的負折射率情形(a)ω=0.72(b)ω=0.7..106 圖5-3.4 頻率ω=0.62時聚焦在結構中的情形……………………107 圖5-3.5 頻率ω=0.76時發散的情形………………………………107 圖5-3.6 在Z=20μm處,不同X位置的強度歸一化分佈圖。(圓形曲線為頻率ω=0.74之負折射率光子晶體系統,三角形曲線為沒有光子晶體結構時之傳遞強度。)………………………108 圖5.4.1 頻率同為0.74,在不同入射角之聚焦情形(a)入射角0度(b)入射角10度…………………………………………109 圖5.4.2 頻率為0.72/0.7/0.72的漸變結構,三種模態的光源聚焦的情形..110 圖5.4.3 漸變結構中頻率為0.72,單一模態入射角-10度的聚焦情..110 圖5.4.4 漸變結構中頻率為0.7,單一模態入射角0度的聚焦情形…111 圖5.4.5 頻率分別為0.72/0.7/0.72之結構,入射角皆為0度時之聚焦.111 圖5.4.6 三模態點光源的聚焦情形……………………………… …112 圖5.4.7 每一漸變結構為20x8個光子晶體之聚焦模擬情形……… 112 圖5.4.8 圓弧形漸變結構示意圖……………………… ……………113 圖5.4.9 圓弧形漸變結構之聚焦情形………………………………113 圖5.4.10 不同負折射率光子晶體結構在(a)Z=10μm與(b)Z=20μm時強度歸一化的比較圖…………………………………………………114

    參考文獻

    [1] E. Yablonovitch, “Inhibited spontaneous emission in solid-sate physics and electronics,” Phys. Rev. Letters., 58, 2059–2062, (1987).
    [2] S. John, “Strong localization of photons in certain disordered dielectric superlattice,” Phys.Rev.Letters, 58, 2486 –2489, (1987).
    [3] Kurt Busch and Sajeev John, “Liquid Crystal Photonic Band Gap Materials: The Tunable Electromagnetic Vacuum,” Physical Review Letters, 83 (5), 967-970, (1999).
    [4] Shung, Kenneth W. K.; Mahan, G. D. ” Calculated photoemission spectra of sodium,” Physical Review Letters, 57(8), 1076-9, (1986).
    [5] C. J. M. Smith, H. Benisty, D. Labilloy, U. Oesterle, R. Houdre, T. F. Krauss, R. M. De La Rue, and C. Weisbuch, “Near-infrared microcavities confined by two-dimensional photonic bandgap crystal,” Electron.Letters., 35, 228–230,(1999).
    [6] S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature, 407, 608–610, (2000).
    [7] T. Baba, N. Fukaya, and A. Motegi, “Light propagation characteristicsin photonic crystal waveguides,” Tech.Dig. CLEO/Pacific Rim 2001, vol. I, paper TuA4-5, 290–291, (2001).
    [8] J. G. Fleming and S. Y. Lin, “Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 μm,” Opt. Lett., 24, 49–51, (1999).
    [9] D. J. Ripin, Kuo-Yi Lim, G. S. Pertrich, Pierre R. Villeneuve, Shanhui Fan, E. R. Thoen, J. D. Joannopoulos, E. P. Ippen, and L. A. Kolodziejski, “Photonic band gap airbridge microcavity resonances in GaAs/AlxOy waveguides.,” Journal of applied physics., 87, 3, (2000)
    [10] Chow, Edmond; Lin, S.Y.; Johnson, S.G.; Villeneuve, P.R.; Joannopoulos, J.D.; Wendt, J.R.; Vawter, G.A.; Zubrzycki, W.; Hou, H.; Alleman, “A.. Three-dimensional control of light in a two-dimensional photonic crystal slab.” Nature, 407 , 983, (2000).
    [11] Cregan, R. F.; Mangan, B. J.; Knight, J. C.; Birks, T. A.; Russell, P. St. J.; Roberts, P. J.; Allan, D. C. “Single-mode photonic band gap guidance of light in air.” Science (Washington, D. C. 285(5433), 1537-1539, (1999).
    [12] Shawn-Yu Lin, V. M. Hietala, Li Wang, and E. D. Jones, “Highly dispersive photonic band-gap prism,” 21, 21, (1996).
    [13] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B, 58(16), 10096–10099, (1998).
    [14] T. F. Krauss, “Photonic crystal integrated optics,” Tech. Dig. CLEO/Pacific Rim 2001, vol. I, paper TuA4-1, 282–283, (2001).
    [15] S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, S. R. Kurtz and Jim Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature , 394, 16, (2002).
    [16] J. G. Fleming, S. Y. Lin, I. EI-Kady and K. M. Ho, “All-metallic three-dimensional photonic crystal with a large infrared bandgap ,” Nature , 417, 2, (2002).
    [17] Steven G. Johnsona and J. D. Joannopoulos, “Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap,” Appl. Phys. Lett., 77(22), 3490, (2000).
    [18] K. Aoki, “Three-dimensional photonic crystal stacking by micro- manipulation,” Appl. Phys. Lett., 81(17), 3122, (2002).
    [19] Yurii A. Vlasov, Xiang-Zheng Bo, James C. Sturm & David J. Norris,“On-chip natural assembly of silicon photonic bandgap crystals ,” Nature , 414, 15, (2001).
    [20] Gruning, U.; Lehmann, V..Macroporous. “Silicon with a complete two-dimensional photonic band gap centered at 5 μm.” Applied Physics Letters, 68(6), 747, (1996).
    [21] Scott Kennedy, Michael Brett, Ovidiu Toader, and Sajeev John, “Fabrication of Tetragonal Square Spiral Photonic Crystals,” Nano Letters, 2(1), 59, (2002).
    [22] Ovidiu Toader and Sajeev John, “Proposed square spiral micro- fabrication architecture for large three-dimensional photonic band gap crystals,” Science, 292, 1133, (2001).
    [23] A. Urbas, Y. Fink, and E. L. Thomas, “One-dimensionally periodic
    dielectric reflectors from self-assembled block copolymer–homopolymer blends,” Macromolecules, 32, 4748–4750, (1999).
    [24] S. Kawakami, “Fabrication of submicrometer 3D periodic structures composed of Si/SiO2,” Electron. Lett., 33(14), 1260–1261,(1997).
    [25] T. Kawashima, T. Sato, K. Miura, Y. Ohtera, N. Ishino, and S. awakami, “Autocloning technology: Fabrication method for photonic crystals based on sputtering process,” Proc. Int. School Quantum electronics, 115–122, (2000).
    [26] T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami “autocloning technique and their application,” Opt. Quantum Electron, 34(1), 63–70, (2001).
    [27] T. Kawashima, K. Miura, T. Sato, and S. Kawakami, “Self-healing effects in the fabrication process of photonic crystals,” Appl. Phys. Lett., 77(16), 2613–2615, (2000).
    [28] Takashi Sato, Yasuo Ohtera, Naoto Ishino, Kenta Miura, and S. Kawakami, “In-Plane Light Propagation in Ta2O5/SiO2 Autocloned Photonic crystals,” J. of Quantum. Electronics, 38, 7, (2002).
    [29] A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, “Negative refraction at infrared wavelengths in a Two-Dimensional photonic crystal,” Physical review letters, 93, 7, (2004).
    [30] T. Baba, N. Fukaya, and A. Motegi, “Light propagation characteristics in photonic crystal waveguides,” Tech. Dig. CLEO/Pacific Rim 2001, vol. I, paper TuA4-5, 290–291, (2001).
    [31] S. Kawakami and Y. Ohtera, “Band engineering of photonic crystals: Realization of novel waveguides,” Proc. 3rd Workshop Photonic Electromagnetic Crystal Structures, St. Andrews, Scotland , (2001).
    [32] K. Miur , Y. Ohtera, H. Ohkubo, N. Akutsu and S. Kawakami, “Reduction of propagation and bending losses of heterostructured photonic crystal waveguides by use of a high-Δ structure,” Optics letters , 28, 9, (2003).
    [33] M. Shirane, A. Gomyo, K. Miura and S. Kawakami, “Optical directional couplers based on autoconed photonic crystals, ” Electronic Lett, 39, 1, (2003).
    [34] Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarization splitters,” Electron. Lett., 35(15), 1271–1272 , (1999).
    [35] M. Notomi, T. Tamamura, T. Kawashima, and S. Kawakami, “Drilled alternating-layer three-dimensional photonic crystals having a full band gap,” Appl. Phys. Lett., 77, 4256–4258, (2000).
    [36] Osamu Hanaizumi, Yasuo Ohtera, Takashi Sato, and S. Kawakami, “Propagation of light beams along line defects formed in a-Si/SiO2 three-dimensional photonic crystals: Fabrication and observation,” Appl. Phys. Lett., 74, 6, (1999).
    [37] Hiroyuki Ohkubo, Y. Ohtera, S. Kawakami, T. Chiba and H. Okano, “Integration and evaluation of multichannel photonic crystal wavelength filters consisting of autocloned Ta2O5/SiO2 multilayer thin films,” Jpn. J. Appl. Phys., 42, 1219-1221, (2003).
    [38] T. Kawashima, T. Sato, K. Miura, Y. Ohtera, N. Ishino, and S. awakami “A new fabrication technique for photonic crystals :Nanolithography combined with alternating-layer deposition” Optical and Quantum Electronics, 53-61, (2002).
    [39] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi and Toshiaki, “Photonic crystals for micro lightwave circuits using wavelength- dependent angular beam steering,” Appl. Phys. Lett., 74, 10, (1999).
    [40] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi and Toshiaki, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett., 74, 9, (1999).
    [41] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, Takashi Sato, and S. Kawakami, “Superprism phenomena in photonic crystals: toward microscale lightwave circuits,” J. Lightwave Tech., 17, 11 , (1999).
    [42] H. Kosaka, T. Kawashima, A. Tomita, Takashi Sato and S. Kawakami, “Photonic-crystal spot-size converter,” Appl. Phys. Lett., 76, 3, (2000).
    [43] S. Kawakami, T. Sato, K. Miura, Y. Ohtera, T. Kawashima, and H. Ohkubo, “3-D photonic-crystal heterostructures: fabrication and in-Line resonator,” Photonics Tech. Lett., 15, 6, (2003).
    [44] T. Sato, N. Ishino, K. Miura, S. Kawakami, and M. Miyagi, “Application of in-plane type autocloned photonic crystals,” Institute of Electronics, Information and Communication Engineers, Tech. Rep. OPE2001-46, (2001).
    [45] Shanhui Fan, Rerre FL Villeneuve, Robert D. Meade, and J. D. Joannopoulos, “Design of three-dimensional photonic crystals at submicron lengthscales,” Appl. Phys. Lett. , vol.65 (II), 12, (1994).
    [46] M. Notomi, T. Tamamura, T. Kawashima, and S. Kawakami, “Transmission characterization of drilled alternating-layer 3-D photonic crystals,” Appl. Phys. Lett. , 93, 11, (2003).
    [47] K. Wang, P. Filloux and N. Paraire, “Two-dimensional photonic crystals by focused-ion-beam etching of multilayer membranes,” J. Vac. Sci. Technol. B, 21, 3, (2003).
    [48] Lin Zhang and Changxi Yang, “Polarization splitter based on photonic crystal fibers,” Optics Express, 11, 9, (2003).
    [49] N. Paraire, P. Filloux and K. Wang, “Patterning andcharacterization of 2D photonic crystals fabricated by focused ion beam etching of multilayer membranes,” Nanotechnology, 15, 341–346, (2004).
    [50] K. H. Dridi, “Intrinsic eigenstate spectrum of planar multilayer stacks of two-dimensional photonic crystals,” Optics Eepress, 11(10), 1156, (2003).
    [51] S.Kawakami, T. Kawashima, and T. Sato, “Mechanism of shape-formation of 3D periodic nanostructures by bias sputtering,” Appl. Phys. Lett., 74, 463–465,(1999).
    [52] T. Kawashima, Takashi Sato, Yasuo Ohtera, and S. Kawakami, “Tailoring of the Unit Cell Structure of Autocloned Photonic Crystals,” J. of Quantum. Electronics, 38, 7, (2002).
    [53] Hong Xiao著, 張鼎張、羅正忠譯, 半導體製程技術導論, 台灣培生出版股份有限公司,台北市, (2002)。
    [54] 莊達人, VLSI製造技術, 高立圖書有限公司出版,台北市, (2000)。
    [55] Osamu Hanaizumi, Kazutaka Ono, Yuichi Ogama, Takehiro Koga, Yuzo Hasegawa,Atsushi Ogihara and Go Saito, “Fabrication and assessment of sputtered Si:SiO2 films emitting white light without annealing, ” Jpn. J. Appl. Phys. 41, 1084, (2002).
    [56] Osamu Hanaizumi, Kazutaka Ono, and Yuichi Ogawa, “Blue-light emission from sputtered Si:SiO2 films without annealing, ” Appl. Phys. Lett., 82, 4, (2003).
    [57] Osamu Hanaizumi, Makoto. Saito and Yasuo. Ohtera, “Introducing CdS into two- and three-dimensional photonic crystals, ” Optical and Quantum Electronics, 34, 71-77, (2002).
    [58]李幸芬,利用半導體製程技術研製三維光子晶體,國立清華大學 碩士論文, 新竹市, (2004)。
    [59] V.G.Veselago, “Electrodynamics of materials with simultaneously negative values of ε[dielectric constant] and μ[magnetic permeability.” Uspekhi Fizicheskikh Nauk,92(3), 517-26, (1967).
    [60] J.B.Pendry, “Negative Refraction Makes a Perfect Lens.”, Physical Review Letters, 85(18), 3966-3969, (2000).
    [61] Shelby, R. A.; Smith, D. R.; Schultz, S. “Experimental verification of a negative index of refraction.”, Science (Washington, DC, United States), 292(5514), 77-78, (2001).
    [62] J. B Pendry, ”Negative refraction.”, Contemporary Physics, 45(3), 191-202, (2004).
    [63] C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, M. Tanielian, “Experimental Verification and Simulation of Negative Index of Refraction Using Snell's Law.”, Physical Review Letters, 90(10), 107401/1-107401/4, (2003)
    [64] P. V. Parimi, W. T. Lu, P. Vodo, J. Sokoloff, S Sridhar, “Negative refraction and left-handed electromagnetism in microwave photonic crystals.” Los Alamos National Laboratory, Preprint Archive, Condensed Matter 1-11, (2003).
    [65] E.Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, C. M. Soukoulis, “Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens.”, Physical Review Letters, 91(20), 207401/1-207401/4, (2003)
    [66] 葉真, “關於左手物質和負折射現象”, 物理雙月刊, 廿六卷二期, 444-449, (2004)。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE