簡易檢索 / 詳目顯示

研究生: 李奕廣
Lee, Yi-Kuang
論文名稱: Quantum Interference and Electron Transport in Synthesized GaN Nanowires
氮化鎵奈米線的成長與元件製作及其量子干涉傳輸特性之研究
指導教授: 吳玉書
Wu, Yu-Shu
邱博文
Chiu, Po-Wen
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2011
畢業學年度: 100
語文別: 英文
論文頁數: 105
中文關鍵詞: 氮化鎵奈米線量子干涉弱侷域效應普適性電導震盪
外文關鍵詞: GaN nanowire, quantum interference, weak localization, universal conductance fluctuations
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 科技的進步,不僅引領了產業的腳步,帶動經濟的發展,甚至影響政治的局勢。而應用在電子產業裡的奈米技術,則為當前科技主要發展項目的其中之一。其進展速度,明顯地反應在電子產品快速更新的腳步上。目前元件尺寸縮小的程度,已經逐漸使得量子效應,顯著地表現出來。經由研究這些量子效應,在設計新概念的元件上,可以提供很多的可能性。

    氮化鎵是目前熱門半導體材料的其中之一。本篇論文主要研究氮化鎵奈米線的成長、分析、元件製備、以及電子的傳輸特性,尤其是量子干涉現象,例如普適性電導震盪以及弱侷域效應。在第一章,先介紹基本的概念,首先提到氮化鎵奈米線的結構,電學特性與潛在應用。接著介紹當尺寸縮小時,量子效應所產生的一些特殊現象。最後介紹電子在物質中的干涉效應。

    第二章是關於氮化鎵奈米線的成長,一開始先提到奈米線成長的機制和方法。接著介紹此實驗所用的氮化鎵奈米線的製備。其中包括了成長設備的建構,反應物和催化劑等相關訊息。詳細地描述成長的方法,最後並提出成長的一些心得和討論。

    奈米線的特性分析則放在第三章,包括了分析的一些方法,例如利用掃描式電子顯微鏡以及穿隧式電子顯微鏡,觀察外觀和細部結構。並利電子束撞擊樣本時所產生的X光頻譜,分析奈米線的成份。奈米線晶體結構的判定,則是利用電子束繞射,以及X光繞射的資料來分析。在加上光致發光的方法瞭解能隙的結構。綜合這些特性分析的結果,我們可以驗證成長出來的奈米線的確是氮化鎵。

    第四章詳述把氮化鎵奈米線製作成元件的方法和經過。主要手續包括微影和金屬沈積等製程,微影的部份包括電子束微影以及光學微影,而金屬沈積也佔了很重要的因素。寬能隙半導體和金屬的接面必須小心處理,才能使後續的量測順利的進行。電子干涉效應必須在低溫下才容易觀察到,因此我們使用了混合液氦的低溫系統,這個低溫系統以及電性量測的建構也會在本章介紹。

    第五章介紹了電性的量測結果和分析。首先藉由分析電場效應來得知奈米線中的載子密度,以及電遷移率。經由此電性分析,我們得知摻雜量和成長參數的關係。重摻雜和輕摻雜的奈米線都被量測到,我們篩選電導度最高的幾個樣本,在低溫下進行磁導率量測。我們觀察到普適性電導震盪和弱侷域效應,並分析之,最後得知了在氮化鎵奈米線中,電子相位的同調長度。


    The advance of technology not only leads the trend of industry but also promotes the development of economy. Sometimes, it even affects the political situations. Nanotechnology applied in electronic industry is one of the representatives. The progress of advancement can be sensed from the pace of the renew of electronic products. Quantum mechanical phenomena has been emerging as a result of progressive downsize of the electronic devices. Studying these phenomena opens up a route to create devices with new concepts.

    Gallium nitride is one of the most popular semiconductor materials for electronic devices. In this thesis, we focus on the study of gallium nitride nanowires, including synthesis, characterization, and transport measurements especially for electron interference phenomena such as universal conductance fluctuations and weak localization.

    In chapter one, we will present an introductory overview to gallium nitride nanowires, including crystal structure, electronic properties, and its potential applications. In addition, the foundation transport theory in constrained matters and quantum interference effects are introduced.

    Chapter two introduces the synthesis of gallium nitride nanowire. Nanowire growth mechanism is explained first. Then we show the nanowire synthesis method and setup of the growth facilities. Those facilities we used and parameters we applied are also presented and discussed.

    Characterization of synthesized nanowires is shown in the chapter three. We used scanning electron microscopy and transmission electron microscopy to study the morphology of the nanowires. By analyzing the energy dispersive x-ray spectra, we identified the elemental constitution of the nanowires. Moreover, the crystal structure of the nanowires is determined by both electron and x-ray diffractions. We also measured the optical gap from photoluminescence spectra. We summed up those characteristics and confirmed that the nanowires were indeed gallium nitride nanowires.

    In order to perform transport measurements, gallium nitride nanowire devices were made. Chapter four shows these nanowire device fabrication processes. The main process includes lithography and metal deposition. Both are important for device fabrication and measurements. The contact issues, which should be carefully addressed, for the wide energy gap semiconductor and metal are also discussed. Furthermore, electron interference phenomena in nanowires are expected to be observed at low temperature. Thus we applied cryogenic system in our measurements. Principle of the cryogenic system and setup of our measurement are also introduced therein.

    Chapter five presents the results of measurements. First, field effect behaviors are analyzed. We calculate the carrier densities and mobilities for nanowires from those data. From those electronic properties, we know how to adjust the growth parameters that are related to electronic properties of the synthesized GaN nanowires. These devices show the best performance in terms of electrical conductance and were chosen for magnetoconductance measurement at low temperature. Universal conductance fluctuations and weak localization were measured. The phase coherence length of electrons in GaN nanowires thus estimated by analyzing these behaviors.

    Abstract . . . . . . . . . . . . . . . . . . . . . . I Acknowledgement . . . . . . . . . . . . . . . . . . V 1 Foundation and theory 1.1 GaN nanowires . . . . . . . . . . . . . . . . . 1 1.1.1 Crystalline Structure of GaN nanowires . . . . 1 1.1.2 Electronic properties of GaN nanowires . . . . 4 1.1.3 Potential applications of GaN nanowires . .. . 5 1.2 Mesoscopic transport . . . . . . . . . . . . . . 9 1.2.1 Characteristic lengths of electron . . . . . . 9 1.2.2 Quantum confinements . . . . . . . . . . . .. 10 1.2.3 Quantum wires and quantum point contacts . .. 13 1.3 Quantum interference effects . . . . . . . . .. 18 1.3.1 The Aharonov-Bohm effect . . . . . . . . . .. 19 1.3.2 Weak localization . . . . . . . . . . . . . . 21 1.3.3 Universal conductance fluctuations . . . . . 23 2 GaN nanowire growth 2.1 Introduction to nanowire growth . . . . . . . . 27 2.1.1 Template synthesis . . . . . . . . . . . . . 27 2.1.2 Spontaneous growth . . . . . . . . . . .. . . 29 2.2 Growth of GaN nanowires . . . . . . . . . . . . 31 2.2.1 Construction of CVD system . . . . . . . .. . 31 2.2.2 Reactant and catalyst . . . . . . . . . . . . 32 2.2.3 Growth procedure . . . . . . . . . . . . . . 34 2.2.4 Discussion . . . . . . . . . . . . . . . . . 37 3 Characterization of GaN nanowires 3.1 Analysis methods . . . . . . . .. . . . . . . . 41 3.1.1 Electron Microscopy . . . . . . . . . . . . . 41 3.1.2 X-ray diffraction . . . . . . . . . . . . . . 45 3.1.3 Photoluminescence . . . . . . . . . . . . . . 45 3.2 Characterization of GaN nanowires . . . . . . . 47 3.2.1 Morphology and compositions . . . . . . . . . 47 3.2.2 Sturctures . . . . . . . . . . . . .. . . . . 50 3.2.3 Energy band gap . . . . . . . . . . . . . . . 54 3.2.4 Summary . . . . . . . . . . . . . . . . . . . 55 4 Device preparation and experimental setup 4.1 Device preparation . . . . . . . . . . . . . . 57 4.1.1 Lithography . . . . . . . . . . . . . . . . 57 4.1.2 Metal deposition . . . . . . . . . . . . . . 59 4.1.3 Device preparation process . . . . . . . . . 60 4.2 Experimental setup . . . . . .. . . . . . . . . 63 4.2.1 Cryogenic system . . . . . . . . . . . . . . 63 4.2.2 Measurement setup . . . . . . . . . . . . . . 66 5 Measurement of GaN nanowire devices 5.1 FET measurement and analysis . . . . . . . . .. 71 5.1.1 Devices with electric field effects . . . . . 71 5.1.2 Devices with no apparent electric field effects 81 5.2 Weak localization . . . . . . . . . . . . . . . 85 5.3 Universal conductance fluctuations . . . . . . 88 6 Summary and outlook . . . . . . . . . . . . . . . 93 Reference . . . . . . . . . . . . . . . . . . . . 105

    [1] Reeber, R. R. & Wang, K. Lattice parameters and thermal expansion of GaN. J. Mater. Res. 15, 40 (2000).
    [2] Kuykendall, T. et al. Crystallographic alignment of high-density gallium nitride nanowire arrays. Nature 3, 524 (2004).
    [3] Maruska, H. & Tietjen, J. The preparation and properties of vapordeposited single-crystalline GaN. Appl. Phys. Lett. 15, 327 (1969).
    [4] Chen, G. D., Smith, M., Lin, J. Y. & Jiang, H. X. Fundamental optical transitions in GaN. Appl. Phys. Lett. 68, 2784 (1996).
    [5] Reshchikov, M. A. & Morkoc, H. Luminescence properties of defects in GaN. J. Appl. Phys. 97, 061301 (2005).
    [6] Huang, Y., Duan, X., Cui, Y. & Lieber, C. M. Gallium nitride nanowire nanodevices. Nano Lett. 2, 101 (2002).
    [7] Look, D. et al. Defect donor and acceptor in GaN. Phys. Rev. Lett. 79, 2273 (1997).
    [8] Nakamura, S., Mukai, T. & Senoh, M. In situ monitoring and hall measurements of GaN grown with GaN bu_er layers. J. Appl. Phys. 71, 5543 (1992).
    [9] Ng, H., Doppalapudi, D., Moustakas, T., Weimann, N. & Eastman, L. The role of dislocation scattering in n-type GaN _lms. Appl. Phys. Lett. 73, 821 (1998).
    [10] Motayed, A. et al. Diameter dependent transport properties of gallium nitride nanowire field effect transistors. Appl. Phys. Lett. 90, 043104 (2007).
    [11] Amano, H., Kito, M., Hiramatsu, K. & Akasaki, I. P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation. Jpn. J. Appl. Phys. 28, L2112 (1989).
    [12] Zhong, Z., Qian, F., Wang, D. & Lieber, C. M. Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Lett. 3, 343 (2003).
    [13] Chen, X., Lee, S. J. & Moskovits, M. Modification of the electronic properties of GaN nanowires by mn doping. Appl. Phys. Lett. 91, 082109 (2007).
    [14] Samuelson, L. et al. Semiconductor nanowires for 0D and 1D physics and applications. Physica E 25, 313 (2004).
    [15] Lu, W. & Lieber, C. M. Semiconductor nanowires. J. Phys. D. 39, R387 (2006).
    [16] Thelander, C. et al. Nanowire-based onedimensional electronics. Mater. Today 9, 28 (2006).
    [17] Li, Y. et al. Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors. Nano Lett. 6, 1468 (2006).
    [18] Bjork, M. T. et al. Nanowire resonant tunneling diodes. Appl. Phys. Lett. 81, 4458 (2002).
    [19] Franceschi, S. D. et al. Single-electron tunneling in InP nanowires. Appl. Phys. Lett. 83, 344 (2003).
    [20] Fasth, C., Fuhrer, A., Bjork, M. T. & Samuelson, L. Tunable double quantum dots in inas nanowires de_ned by local gate electrodes. Nano Lett. 5, 1487 (2005).
    [21] Morkoc, H. & Mohammad, S. N. High-luminosity blue and blue-green gallium nitride light-emitting diodes. Science 267, 51 (1995).
    [22] Fasol, G. Room-temperature blue gallium nitride laser diode. Science 272, 1751 (1996).
    [23] Gaul, D. A. & Rees, W. S. True blue inorganic optoelectronic devices. Adv. Mater. 12, 935 (2000).
    [24] Pearton, S. J. & Ren, F. GaN electronics. Adv. Mater. 12, 1571 (2000).
    [25] Duan, X., Huang, Y., Cui, Y., Wang, J. & Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66 (2001).
    [26] Wang, J., Gudiksen, M. S., Duan, X., Cui, Y. & Lieber, C. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293, 1455 (2001).
    [27] Huang, M. H. et al. Room-temperature ultraviolet nanowire nanolasers. Science 292, 8 (2001).
    [28] Johnson, J. C. et al. Single gallium nitride nanowire lasers. Nat. mater. 1, 106 (2002).
    [29] Cheng, G. et al. Current recti_cation in a single GaN nanowire with a well-designed pn junction. Appl. Phys. Lett. 83, 1578 (2003).
    [30] Kim, H., Kang, T. W. & s. Chung, K. Nanoscale ultraviolet-lightemitting diodes using wide-bandgap gallium nitride nanorods. Adv. Mater. 15, 567 (2003).
    [31] Motayed, A. & Davydov, A. V. 365 nm operation of n-nanowire/p-gallium nitride homojunction light emitting diodes. Appl. Phys. Lett. 90, 183120 (2007).
    [32] Wu, Y., Xiang, J., Yang, C., Lu, W. & Lieber, C. M. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 430, 61 (2004).
    [33] Lin, H. et al. Synthesis and characterization of core-shell GaP@GaN and GaN@GaP nanowires. Nano Lett. 3, 537 (2003).
    [34] Qian, F. et al. Gallium nitride-based nanowire radial heterostructures for nanophotonics. Nano Lett. 4, 1975 (2004).
    [35] Qian, F., Gradecak, S., Li, Y., Wen, C. & Lieber, C. M. Core/multishell nanowire heterostructures as multicolor, high-e_ciency light-emitting diodes. Nano Lett. 5, 2287 (2005).
    [36] Sutter, E., Camino, F. & Sutter, P. One-step synthesis of Ge-SiO2 coreshell nanowires. Appl. Phys. Lett. 94, 83109 (2009).
    [37] Zhang, J., Zhang, L., Jiang, F., Yang, Y. & Li, J. Fabrication and optical property of silicon oxide layer coated semiconductor gallium nitride nanowires. J. Phys. Chem. B 109, 101 (2005).
    [38] Hersee, S. D., Sun, X. & Wang, X. The controlled growth of GaN nanowires. Nano Lett. 6, 1808 (2006).
    [39] Gudiksen, M. S., Lauhon, L. J., Wang, J., Smith, D. C. & Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415, 617 (2002).
    [40] Hsieh, C. et al. Coaxial metal-oxide-semiconductor (MOS) Au/Ga2O3/GaN nanowires. Nano Lett. 8, 3288 (2008).
    [41] Chen, C. et al. Catalytic growth and characterization of gallium nitride nanowires. J. Am. Chem. Soc. 123, 2791 (2001).
    [42] Inoue, Y. et al. Growth and _eld emission of GaN nanowires grown by metal organic chemical vapour deposition. Phys. stat. sol. (c) 4, 2366
    (2007).
    [43] Huang, Y. et al. Logic gates and computation from assembled nanowire building blocks. Science 294, 1313 (2001).
    [44] Kim, J. et al. Schottky diodes based on a single GaN nanowire. Nanotechnology 13, 701 (2002).
    [45] Lee, S. & Lee, S. Current transport mechanism in a metalvGaN nanowire schottky diode. Nanotechnology 18, 495701 (2007).
    [46] Ju, Y. S. & Goodson, K. E. Phonon scattering in silicon films with thickness of order 100 nm. Appl. Phys. Lett. 74, 3005 (1999).
    [47] Kim, P., Shi, L., Majumdar, A. & McEuen, P. L. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87 215502 (2001).
    [48] Berggren, K. F. & Roos, G. Characterization of very narrow quasi-one-dimensional quantum channels. Phys. Rev. B 37, 10118 (1988).
    [49] van Houten, H., Beenakker, C., van Wees, B. & Mooij, J. Boundary scattering modi_ed one-dimensional weak localization in submicron GaAs/AlGaAs heterostructures. Surf. Sci. 196, 144 (1988).
    [50] Thornton, T. J., Roukes, M. L., Scherer, A. & de Gaag, B. P. V. Boundary scattering in quantum wires. Phys. Rev. Lett. 63, 2128 (1989).
    [51] van Wees, B. J., H. van Houten, C. W. J. B., Williamson, J. G., Kouwenhoven, L. P. & van der Marel, D. Quantized conductance of point contacts in a two-dimensional electron gas. Phys. Rev. Lett. 60, 848 (1988).
    [52] van Wees, B. J., Kouwenhoven, L. P., van Houten, H., Beenakker, C. W. J. & Mooij, J. E. Quantized conductance of magnetoelectric subbands in ballistic point contacts. Phys. Rev. B 38, 3625 (Wees).
    [53] Wharam, D. et al. One-dimensional transport and quantisation of the ballistic resistance. J. Phys. C 21, L209 (1998).
    [54] Buttiker, M. Quantized transmission of a saddle-point constriction. Phys. Rev. B 41, 7906 (1990).
    [55] Lin, J. J. & Bird, J. P. Recent experimental studies of electron dephasing in metal and semiconductor mesoscopic structures. Condens. Matter 14, R501 (2002).
    [56] Aharonov, Y. & Bohm, D. Signi cance of electromagnetic potentials in quantum theory. Phys. Rev. 115, 485 (1959).
    [57] Umbach, C. P., Washburn, S., Laibowitz, R. B. & Webb, R. A. Magnetoresistance of small, quasi-one-dimensional, normal-metal rings and lines. Phys. Rev. B 30, 4048 (1984).
    [58] Webb, R. A., Washburn, S., Umbach, C. P. & Laibowitz, R. B. Observation of h/e Aharonov-Bohm oscillations in normal-metal rings. Phys. Rev. Lett. 54, 2696 (1985).
    [59] Umbach, C. P., Santhanam, P. S., van Haesendock, C. & Wedd, R. A. Nonlocal electrical properties in mesoscopic devices. Phys. Rev. Lett. 50, 1289 (1987).
    [60] Buttiker, M., Imry, Y., Landauer, R. & Pinhas, S. Generalized manychannel condctance formula with application to small rings. Phys. Rev. B 31, 6207 (1985).
    [61] Nikolaeva, A., Gitsu, D., Konopko, L., Graf, M. J. & Huber, T. E. Quantum interference of surface states in bismuth nanowires probed by the Aharonov-Bohm oscillatory behavior of the magnetoresistance. Phys. Rev. B 77, 075332 (2008).
    [62] Reusch, T. C. G., Fuhrer, A., Fuchsle, M., Weber, B. & Simmons, M. Y. Aharonovvbohm oscillations in a nanoscale dopant ring in silicon. Appl. Phys. Lett. 95, 032110 (2009).
    [63] McConile, P. & Birge, N. O. Weak localization universal conductance uctuations and 1/f noise in Ag. Phys. Rev. B 47, 16667 (1993).
    [64] Dhara, S. et al. Magnetotransport properties of individual InAs nanowires. Phys. Rev. B 79, 121311 (2009).
    [65] Bergmann, G. Weak localization in thin _lms. Phys. Rep. 107, 1 (1984).
    [66] Skocpol, W. J., Mankiewich, P. M., Howard, R. E., jackel, L. D. & Tennant, D. M. Universal conductance uctuations in silicon inversionlayer nanostructures. Phys. Rev. Lett. 56, 2865 (1986).
    [67] Thornton, T. J., Pepper, M., Ahmed, H., Davies, G. J. & Andrews, D. Universal conductance uctuations and electron coherence lengths in a narrow two-dimensional electron gas. Phys. Rev. B 36, 4514 (1987).
    [68] Taniguchi, H., Takahara, J., Takagaki, Y. & Gamo, K. Anderson localization and universal conductance uctuations with spin-orbit interactions in delta doped GaAs films and wires. Jap. J. Appl. Phys. 30, 2808 (1991).
    [69] Stone, A. D. Magnetoresistance uctuations in mesoscopic wires and rings. Phys. Rev. Lett. 54, 2692 (1985).
    [70] Lee, P. A. Universal conductance uctuations in disordered metals. Physica A 140, 169 (1986).
    [71] Beenakker, C. W. J. & van Houten, H. Flux-cancellation effect on narrow-channel magnetoresistance uctuations. Phys. Rev. B 37, 6544 (1988).
    [72] Fisher, D. S. & Lee, P. Realation between conductivity and transmission matrix. Phys. Rev. B 23, 6851 (1981).
    [73] Lee, P. A. & Stone, A. D. Universal conductance uctuations in metals. Phys. Rev. Lett. 55, 1622 (1985).
    [74] Vila, L. et al. Universal conductance uctuations in epitaxial GaMnAs ferromagnets: dephasing by structural and spin disorder. Phys. Rev. Lett. 98, 027204 (2007).
    [75] Hansen, A. E., Bjork, M. T., Fasth, C., Thelander, C. & Samuelson, L. Spin relaxation in InAs nanowires studied by tunable weak antilocalization. Phys. Rev. B 71, 205328 (2005).
    [76] Blomers, C. et al. Temperature dependence of the phase-coherence length in InN nanowires. Appl. Phys. Lett. 81, 132101 (2008).
    [77] Blomers, C. et al. Phase-coherent transport in inn nanowires of various sizes. Phys. Rev. B 77, 201301 (2008).
    [78] Frielinghaus, R., Hernandez, S. E., Calarco, R. & Schapersa, T. Phasecoherence and symmetry in four-terminal magnetotransport measurements on inn nanowires. Appl. Phys. Lett. 94, 252107 (2009).
    [79] Su, Y. W. et al. Magnetoresistance fluctuations in a weak disorder indium nitride nanowire. J. Phys. D: Appl. Phys. 42, 185009 (2009).
    [80] Zheng, M. et al. Magnetic properties of ni nanowires in self-assembled arrays. Phys. Rev. B 62, 12282 (2000).
    [81] Zeng, H. et al. Magnetic properties of self-assembled Co nanowires of varying length and diameter. J. Appl. Phys. 87, 4718 (2000).
    [82] Whitney, T., Jiang, J., Searson, P. & Chien, C. Fabrication and magnetic propertis of arrays of metallic nanowires. Science 261, 1316 (1993).
    [83] Yu, H. & Buhro, W. E. Solution-liquid-solid growth of soluble GaAs nanowires. Adv. Mater. 15, 416 (2003).
    [84] Wagner, R. S. & Ellis, W. C. Vapor-liquid-solid mechanism of single crystalline growth. Appl. Phys. Lett. 4, 89 (1964).
    [85] Schmidt, V. & Gosele, U. How nanowires grow. Science 316, 698 (2007).
    [86] Kodambaka, S., Terso_, J., Reuter, M. C. & Ross, F. M. Germanium nanowire growth below the eutectic temperature. Science 316, 729 (2007).
    [87] Huang, M. H. et al. Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 13, 113 (2001).
    [88] Han, W. & Zettl, A. Pyrolysis approach to the ynthesis of gallium nitride nanorods. Appl. Phys. Lett. 80, 303 (2002).
    [89] Ikejiri, K., Noborisaka, J., Hara, S., Motohisa, J. & Fukui, T. Mechanism of catalyst-free growth of GaAs nanowires by selective area movpe. J. Cryst. Growth 298, 616 (2007).
    [90] Duan, X. & Lieber, C. Laser-assisted catalytic growth of single crystal GaN nanowires. J. Am. Chem. Soc. 122, 188 (2000).
    [91] Han, W., Fan, S. & Q. Li, Y. H. Synthesis of gallium nitride nanorods through a carbon nanotube con_ned reaction. Science 277, 1287 (1997).
    [92] Han, W., Redlich, P., Ernst, F. & Ruhle, M. Synthesis of GaN-carbon composite nanotubes and GaN nanorods by arc discharge in nitrogen atmosphere. Appl. Phys. Lett. 76, 652 (2000).
    [93] Stoica, T. et al. Photoluminescence and intrinsic properties of MBE grown InN nanowires. Nano Lett. 6, 1541 (2006).
    [94] Calarco, R. et al. Nucleation and growth of GaN nanowires on si(111) performed by molecular beam epitaxy. Nano Lett. 7, 2248 (2007).
    [95] Wang, D. et al. Raman characterization of electronic properties of selfassembled GaN nanorods grown by plasma-assisted molecular-beam epitaxy. Appl. Phys. Lett. 87, 242105 (2005).
    [96] Tchernycheva, M. et al. Growth of GaN free-standing nanowires by plasma-assisted molecular beam epitaxy: structural and optical characterization. Nanotechnology 18, 385306 (2007).
    [97] Lee, M. W., Twu, H. Z., Chen, C. C. & Chen, C. H. Optical characterization of wurtzite gallium nitride nanowires. Appl. Phys. Lett. 26, 3963 (2001).
    [98] Han, S., Oh, H., Kim, J., Seong, H. & Choi, H. Observation of hysteretic magnetoresistance in Mn-doped GaN nanowires with the mesoscopic Co and Ti/Au contacts. Appl. Phys. Lett. 87, 062102 (2005).
    [99] Ham, M. et al. Contact characteristics in GaN nanowire devices. Nanotechnology 17, 2203 (2006).
    [100] Cheng, G. S. et al. Large-scale synthesis of single crystalline gallium nitride nanowires. Appl. Phys. Lett. 75, 2455 (1999).
    [101] Stern, E. et al. Electrical characterization of single GaN nanowires. Nanotechnology 16, 2941 (2005).
    [102] Lyu, S. et al. Catalytic synthesis and photoluminescence of gallium nitride nanowires. Chem. phys. lett. 367, 136 (2003).
    [103] Chen, X. et al. Straight and smooth GaN nanowires. Adv. Mater. 12, 1432 (2000).
    [104] Chen, C. & Yeh, C. Large-scale catalytic synthesis of crystalline gallium nitride nanowires. Adv. Mater. 12, 738 (2000).
    [105] Chen, X., Xu, J., Wang, R. R. & Yu, D. High-quality ultra fine GaN nanowires synthesized via chemical vapor deposition. Adv. Mater. 15, 419 (2003).
    [106] Fang, F. et al. Growth of well-aligned ZnO nanowire arrays on Si substrate. Nanotechnology 18, 235604 (2007).
    [107] Shalish, I. & Shapira, Y. Surface states and surface oxide in GaN layers. J. Appl. Phys. 89, 390 (2001).
    [108] Liu, Q. Z. & Lau, S. S. A review of the metal-GaN contact technology. Solid. State. Electron. 42, 677 (1998).
    [109] Luther, B. P., Mohney, S. E., Delucca, J. M. & Karlicek, R. F. Study of contact resistivity, mechanical integrity, and thermal stability of Ti/AI and Ta/AI ohmic contacts to n-type GaN. J. Electron. Mater. 27, 196 (1998).
    [110] Dimitriadis, C. et al. Contacts of titanium nitride to n- and p-type gallium nitride films. Solid. State. Electron. 43, 1969 (1999).
    [111] Luther, B. P. et al. Investigation of the mechanism for ohmic contact formation in Al and Ti/Al contacts to n-type GaN. Appl. Phys. Lett. 70, 57 (1997).
    [112] Hwang, J. S. et al. E_ect of Ti thickness on contact resistance between GaN nanowires and Ti/Au electrodes. Appl. Phys. Lett. 85, 1636 (2004).
    [113] Sheu, J. K. et al. The e_ect of thermal annealing on the Ni/Au contact of p-type GaN. J. Appl. Phys. 83, 3172 (1998).
    [114] Sheu, J. K. et al. High-transparency Ni/Au ohmic contact to p-type GaN. Appl. Phys. Lett. 74, 2340 (1999).
    [115] Cha, H. et al. Fabrication and characterization of pre-aligned gallium nitride nanowire field effect transistors. Nanotechnology 17, 1264 (2006).
    [116] Motayed, A., He, M., Davydov, A. V., Melngailis, J. & Mohammad, S. N. Realization of reliable GaN nanowire transistors utilizing dielectrophoretic alignment technique. J. Appl. Phys. 100, 114310 (2006).
    [117] Prabhakaran, K., Andersson, T. G. & Nozawa, K. Nature of native oxide on GaN surface and its reaction with Al. Appl. Phys. Lett. 69, 3212 (1996).
    [118] Kim, J. et al. Electrical transport properties of individual gallium nitride nanowires synthesized by chemical-vapor-deposition. Appl. Phys. Lett. 80, 3548 (2002).
    [119] Kim, J. et al. Temperature-dependent single-electron tunneling effect in lightly and heavily doped GaN nanowires. Phys. Rev. B 69, 233303 (2004).
    [120] Cui, Y., Duan, X., Hu, J. & Lieber, C. M. Doping and electrical transport in silicon nanowires. J. Phys. Chem. B 104, 5213 (2000).
    [121] Armstrong, A., Li, Q., Lin, Y., Talin, A. A. &Wang, G. T. GaN nanowire surface state observed using deep level optical spectroscopy. Appl. Phys. Lett. 96, 163106 (2010).
    [122] Zhang, D. et al. Electronic transport studies of single-crystalline In2O3 nanowires. Appl. Phys. Lett. 82, 113 (2003).
    [123] Simeonov, S. S. et al. Trap-assisted tunneling at temperatures near 77 k in laser annealed si n+ -p junctions. J. Appl. Phys. 90, 860 (2001).
    [124] Moesslein, J., Lopez-Otero, A., Fahrenbruch, A. L., Kim, D. & Bube, R. H. Transport measurements in p-type cdte single crystals and ionbeam doped thin _lms. J. Appl. Phys. 73, 8359 (1993).
    [125] Nam, C. Y., Kim, J. Y. & Fischer, J. E. Focused-ion-beam platinum nanopatterning for gan nanowires: Ohmic contacts and patterned growth. Appl. Phys. Lett. 86, 193112 (2005).
    [126] Sundaram, V. S. & Mizel, A. Surface e_ects on nanowire transport: a numerical investigation using the boltzmann equation. J. Phys.: Condens. Matter 16, 4697 (2004).
    [127] Li, J., An, L., Lu, C. & Liu, J. Conversion between hexagonal GaN and beta-Ga2O3 nanowires and their electrical transport properties. Nano Lett. 6, 148 (2006).
    [128] Simpkinsa, B. S., Pehrsson, P. E. & Laracuente, A. R. Electronic conduction in GaN nanowires. Appl. Phys. Lett. 88, 072111 (2006).
    [129] Altshuler, B. L. & Aronov, A. G. Magnetoresistance of thin films and of wires in a longitudinal magnetic field. JETP Lett. 33, 499 (1981).
    [130] Lee, P. A., Stone, A. D. & Fukuyama, H. Universal conductance fluctuations in metals: Effects of finite temperature, interactions, and magnetic field. Phys. Rev. B 35, 1039 (1987).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE