研究生: |
陳美齡 MEILING CHEN |
---|---|
論文名稱: |
國中學生力與運動解題歷程之研究 A study of Force and Motion Problem-solving Processes of Junior High School Students |
指導教授: | 蘇宏仁 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
竹師教育學院 - 數理教育研究所 Graduate Institute of Mathematics and Science Education |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 176 |
中文關鍵詞: | 力與運動 、另有概念 、放聲思考 、解題歷程 、解題策略 |
外文關鍵詞: | force and motion, alternative conception, thinking aloud, problem-solving process, problem-solving strategy |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本研究之目的在探討國三學生解「力與運動」相關問題時的概念表現與行為歷程,主要是採用質性研究的方式,先對研究者所任教學校的218名國三學生進行紙筆測驗,再從中擇選成績表現分屬高、中、低的學生共8名進行放聲思考解題、訪談與回饋問卷等活動,隨後參考Bransford與Stein(1984)所提出的 IDEAL 解題歷程模式對學生的解題歷程行為進行編碼與分析。
研究結果顯示(一)國三學生在「力與運動」相關單元是具另有概念的,如:受生活經驗的影響,無法想像光滑無摩擦力的理想狀態,甚至認為物體需克服重力,才能由靜止狀態啟動;此外,多數學生能使用阿基米德浮力公式進行解題,但對浮力的成因卻一無所知。(二)國三學生在解「力與運動」相關試題的行為歷程確實是具有階段性的,並符合IDEAL 解題歷程模式。(三)圈關鍵字、公式法、類推、心算與簡化計算等為學生解「力與運動」相關試題時常用的策略,但倘若要教導低成就同學時,會再輔以示意圖與情境模擬等策略來協助對方瞭解題意。(四)影響解題成敗的因素之一為試題本身,如:文字描述的方式、解題所涉及概念的難易度,以及解題所需步驟的多寡等;此外,解題者本身的特質也是影響解題成敗的因素之一,當中解題者所具備物理概念的質與量,相較於解題策略與歷程的表現,對解題成敗具有更深遠的影響。
Abstract
Using the qualitative research method, the purpose of this study was to explore the performance and behaviors of the ninth graders while solving force and motion" problems. At beginning 218 ninth graders in the school which the researcher teaches in took a paper test then by the score of the test, 8 students sorted by high, middle and low grade levels were chosen to join the thinking aloud problem-solving, interview and feedback questionnaire activities. Then the researcher started to encode and analyze the students’ behaviors of problem-solving by referring to the "IDEAL" mode of Bransford and Stein (1984).
The results showed that (1) the ninth graders have alternative conceptions about the "force and motion". Influencing by the life experience, students can not imagine an ideal plane which is smooth and frictionless, as well as they think that the object has to overcome the gravity force in order to move from static state. In addition, most students can use the Archimedes’ buoyancy formula for problem-solving, but have no idea about the causes of buoyancy. (2) the ninth graders solve the "force and motion" related problems stage by stage which conforms to the "IDEAL" mode. (3) the strategies such as highlight key words, use formulas, reason by analogy, mental arithmetic and simplifying calculation were often used by students to solve the "force and motion" related problems. When teaching cohorts who got low scores in test, schematic and scenario strategies were used complementary by students to help for understanding the meaning of the problem. (4) one of the important factors that affect problem-solving is the test item itself, such as: text description of the problem, difficulty of the concept used in problem-solving, as well as the quantity of required steps in problem-solving, etc. In addition, the characteristic of the problem solver itself is one of the important factors also. Comparing to strategies and behaviors of problem-solving, the success of problem-solving has deeply influenced by the sound physical concepts that the solver owned.
中文參考書目
王昭明(1993)。解題歷程研究法─有聲思考法簡介。台灣教育,512,53-57。
王雅各(2004)。質性研究。台北:心理。
李心潔、葉佩真、劉金山(2002)。基本能力指標的建立與轉換—專訪政治大學教育系余民寧教授。教育研究月刊,96,11-16。
余民寧(1997)。有意義的學習—概念構圖之研究。台北:商鼎文化。
余民寧(2004)。從調查數據回顧基本學力測驗的實施。測驗學刊,52(1),105-132。
宋曜廷、許福元、曾芬蘭、蔣莉蘋、孫維民(2007)。國民中學學生基本學力測驗的回顧與展望。教育研究與發展期刊,3(4),29-48。
林世華(2001)。跨世紀的測驗發展計畫-國民中學學生基本學力測驗發展計畫。飛揚通訊,1,14-16。
吳芝儀、李奉儒譯(1995)。質的評鑑與研究。台北:桂冠。
吳清山、林天祐(1998a)。基本能力。教育資料與研究,25,75-76。
吳清山、林天祐(1998b)。基本學力。教育資料與研究,25,77。
洪志明、蔡曉信(2002)。高中數理實驗班學生「水溶液中的化學平衡」解題之質性研究。師大學報:科學教育類,47(1),15-38。
研發組(2002)。國中基本學力測驗自然科試題之設計理念。飛揚,13,26-28。
唐偉成、江新合(1998)。以問題解決為導向的教學理念與模式。屏師科學教育,8,12-28。
國中基測推動工作委員會(2009)。九十九年國民中學學生基本學力測驗問與答。2009年11月15日,取自http://www.bctest.ntnu.edu.tw
教育部(2008)。九十七年國民中小學九年一貫課程綱要。2012年07月21日,取自http://www.edu.tw/eje/content.aspx?site_content_sn=15326
郭重吉(1990)。學生科學知識認知結構的評估與描述。國立彰化師範大學學報,1,279-320。
郭重吉、吳武雄(1989)。利用晤談方式探查國中學生對重要物理概念的另有架構之研究(I)。國科會專題研究計畫成果報告。彰化:彰化師大。
郭重吉、吳武雄(1990)。利用晤談方式探查國中學生對重要物理概念的另有架構之研究(II)。國科會專題研究計畫成果報告。彰化:彰化師大。
陳章正、江新合(2007)。建構高中物理解題教學模式之研究。國立台中教育大學學報,21(1),17-42。
許榮富、黃德亮(1986)。問題解決能力的教育與問題設計及其對學習的影響。科學教育月刊,91,2-13。
黃台珠(1984)。概念的研究及其意義。科學教育月刊,66,44-56。
張慧貞(2007)。創新物理教材教法-理論與錦囊。台中:逢甲大學。
楊坤原(1999)。問題解決在科學學習成就評量上的應用。科學教育月刊,216,3-13。
楊坤原、鄭湧涇(1997)。高一學生遺傳學解題表現與解題策略之研究。科學教育學刊,5(4),529-555。
楊坤原、鄭湧涇(1998)。認知風格、認知策略、遺傳學知識與遺傳學解題之研究。科學教育學刊,6(3),271-284。
顏榮義、謝哲仁(2005)。國一一般能力資優生的解題歷程分析。中等教育期刊,56(3),100-125。
鐘聖校(1990)。認知心理學。台北:心理。
西文參考書目
American Association for the Advancement of Science (1993). Benchmarks for science literacy. New York: Oxford University Press.
Abimbola, I. O. (1988). The problem of terminology in the study of student conceptions in science. Science Education, 72(2), 175-184.
Andersson, B. (1986). The experiential gestalt of causation: A common core to pupils’ preconceptions in science. European Journal of Science Education, 8(2), 155-171.
Ausubel, D. P. (1968). Educational Psychology: A cognitive view. New York: Holt, Rinehart and Winston.
Bell, B. (1993). Children’s science, constructivism and learning in science. Geelong: Deakin University Press.
Bing, T. J., & Redish, E. F. (2008). Symbolic manipulators affect mathematical mindsets. American Journal of Physics, 76(4), 418-424.
Bonder, G. (1991). I have found you an argument: The conceptual knowledge of beginning chemistry graduate students. Journal of Chemical Education, 68, 385-388.
Bransford, J. D., & Stein, B. S. (1984). The ideal problem solver: A guider for improving thinking, learning, and creativity. New York: Freeman.
Bransford, J. D., & Vye, N. (1989). Cognitive research and its implications for instruction. In Resnick, L., & Klopfer, L. (Eds.), Toward the thinking curriculum: Current cognitive research, (pp.171-205). Alexandria, VA: Association for Supervision and Curriculum Development.
Brown, D. (1992). Using examples and analogies to remediate misconceptions in physics: Factor influencing conceptual change. Journal of Research in Science Teaching, 29(1),17-34.
Chang, H. P. et al. (2007). Investigating primary and secondary students' learning of physics concepts. International Journal of Science Education in Taiwan, 29(4), 465–482.
Clement, J. (1993). Using bridging analogies and anchoring intuitions to deal with students’ preconceptions in physics. Journal of Research in Science Teaching, 30(10), 1241-1257.
De Posada, J. M. (1997). Conceptions of high school students concerning the internal structure of metals and their electric conduction: Structure and evolution. Science Education, 81, 445-467.
Denzin, N. K., & Lincoln, Y. S. (Eds.). (2000). Handbook of qualitative research (2nd ed.). London: Sage.
Driver, R., & Easley, J. (1978). Pupils and paradigms: A review of literature related to concept development in adolescent science students. Studies in Science Education, 5, 61-84.
Duit, R., Treagust, D. F., & Mansfield, H. (1996). Improving teaching and learning in science and mathematics. New York: Teachers College Columbia University.
Ebel, R.L. and Frisbie, D.A. (5th ed). (1991). Essentials of Educational Measurement. Englewood Cliffs, NJ: Prentice Hall.
Finegold, M., & Gorsky, P. (1991). Students’ conceptions of force as applied to related physical systems: A search for consistency. International Journal of Science Education, 13(1), 97-113.
Fortus, D. (2008). The importance of learning to make assumptions. Science educaton, 93(1), 86-108.
Fredette, N., & Markman, E. M. (1980). Student conceptions of simple circuits. The Physics Teacher, 18(3), 194-198.
Gagne, E. D. (1985). The cognitive psychology of school learning. Boston and Toronto: Little, Brown and Company.
Galili, I., & Lavrik, V. (1998). Flux concept in learning about light: A critique of the present situation. Science Education, 82, 591-613.
Gick, M. L. (1986). Problem-solving strategies. Educational Psychologist, 21, 99-120.
Glass, A. L., & Holyoak, K. J. (1986). Cognition. New York: Random House.
Gunstone, R. F. (1989). A comment on “the problem of terminology in the study of student conceptions in science”. Science Education, 73(6), 643-646.
Gussarsky, E., & Gorodetsky, M. (1990). On the concept “chemical Equilibrium”: The associative framework. Journal of Research in Science Teaching, 27(3), 197-204
Hashweh, M. (1988). Descriptive studies of students’ conceptions in science. Journal of Research in Science Teaching, 25(2), 121-134.
Hestenes, D. (1987). Toward a modeling theory of physics instruction. American Journal of Physics, 55, 440-454.
Hestenes, D., Wells, W., & Swackhamer, G. (1992). Force concept inventory. The Physics Teacher, 30, 141-158.
Hewson, M. G. (1986). The acquisition of scientific knowledge: Analysis and representation of student conceptions concerning density. Science Education, 70, 159-170.
Kelly, T. L. (1939). The selection of upper and lower groups for the validation of test items. Journal of Educational Psychology, 30, 17-24.
Kilpatrick, J. (1967). Analyzing the solution of word problems in mathematics: An exploratoty study. California: Stanford University.
Kilpatrick, J. (1985). A retrospective account of the past twenty-five years of research on teaching mathematical problem solving. In E.A. Silver(Ed.), Teaching and learning mathematical problem solving: Multiple research perspectives (pp.1-15). Hillsdale, New Jersey: Lawrence Erlbaum Associates.
Kohl, P. B., & Finkelstein, N. D. (2005). Student representational competence and self-assessment when solving Physics problems. Physics Education Research 1, 010104.
Krulik, S., & Rudnick, J. A. (1984). Problem solving: A handbook for teachers (2nd ed.). Boston: Allyn and Bacon, Inc.
Lester, F. K. (1980). Research in mathematical problem solving. In R.J. Shumway (Ed.), Research in mathematical education (pp.286-323). Reston, VA: NCTM.
Lewis, E., & Linn, M. (1994). Heat energy and temperature conceptions of adolescents, adults, and experts: Implications for curricular improvements. Journal of Research in Science Teaching, 31(6), 657-677.
Martin, M. D. (1964). Reading comprehension abstract verbal reasoning and computation as factors in arithmetic problem solving. Dissertation Abstract International, 24, 4547-4548.
Mayer,R. E. (1985), Implications of cognitive psychology for instruction in mathematical problem solving. In E. A. Silver(Ed.), Teaching and learning mathematical problem solving. Multiple research perspective (pp.123-138), Hillsdale, NJ.: Lawrence Associates.
National Council of Supervisors of Mathematics (1977). Position paper on basic mathematical skill. Arithmetic Teacher, 25, 19-22.
Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.
Novak, J. D. (1977). An theory of education. Ithaca, NY: Cornell University Press.
Novak, J. D., & Gowin, D. B. (1984). Learning how to learn. New York, NY: Cambridge University Press.
Novak, J. D., & Musonda, D. (1991). A twelve-year longitudinal study of science concept learning. American Educational Research Journal, 28(1), 117-153
Novak, J. D. (1996). Concept mapping: A tool for improving science teaching and learning. In Treagust, Duit & Fraser (Ed.), Improving Teaching in Science and Mathematics. New York:Teachers College.
Oliva, J. M. (1999). Structural patterns in students’ conceptions in mechanics. International Journal of Science Education, 21(9), 903-920.
Osborne, R. J., & Wittrock, M. C. (1983). Learning science: A generative Process. Science Education, 67(4), 489-508.
Palmer, D. H., & Flanagan, R. B. (1996). Readiness to change the conception that “motion-implies- force”: A comparison of 12-year-old and 16-year-old students. Science Education, 81(3), 317-331.
Peterson, R. F., Treagust , D. F., & Garnett, P. (1986). Identification of secondary students’ misconception of covalent bonding and structure concepts using a diagnostic test instrument. Research in Science Education, 16(1), 40-48.
Piaget, J. (1929). The child’s conception of the world. London: Kegan Paul, Trench, Tauber and Company.
Polya, G. (1945). How to solve it. Garden city, NY: Doubleday.
Polya, G. (1957). How to solve it (2nd ed.). NJ: Princeton University
Press.
Redish, E. F. (2005). Problem solving and the use of math in physics courses. Invited talk presented at the conference, World View on Physics Education in 2005: Focusing on Change, Delhi, August 21-26, 2005. Retrieved November 15, 2009, from http://arxiv.org/ftp/physics/papers/0608/0608268.pdf
Reif, F., Larkin, J.H., & Brackett, G.C. (1976). Teaching general learning and problem-solving skills. American Journal of Physics, 44(3), 212-217.
Rowe, H. A. H. (1985). Problem solving and intelligence. Hillsdale, NJ: Erlbaum.
Sadanand, N., & Kess, J. (1990). Concepts in force and motion. The Physics Teacher, 28, 530-533.
Sanger, M. (2000). Using particulate drawings to determine and improve students’ conceptions of pure substances and mixtures. Journal of Chemical Education, 77(6), 762-766.
Schoenfeld, A. H. (1982). Mathematical problem solving. Orland, FL: Academic Press.
Schoenfeld, A. H. (1985). Mathematical problem solving. NY: Academic Press.
Sequeira, M., & Leite, L. (1991). Alternative conceptions and history of science in physics teacher education". Science Education, 75(1), 45-56.
Simon, H. A. (1980). Problem solving and education. In D. T. Tuma, & F. Reif (Eds.). Problem solving and education: Issues in teaching and research (pp. 81-96). Hillsdale, MJ: Erlbaum.
Stavridou, H., & Solomonidou, C. (1998). Conceptual reorganization and the construction of the chemical reaction concept. International Journal of Science Education, 20(2), 205-221.
Terry, C., & Jones ,G. (1986) .Alternative frameworks :Newton's third law and conceptual change. European Journal of Science Education, 8(3), 291-298 .
Thijs, G. D. (1992). Evaluation of an introductory course on “force” considering students’ preconceptions. Science Education, 20(10), 1257-1269.
Touger, F. S., Dufresne, R. F., Gerace, W. F., Hardiman, P. T., & Mestre, F. P. (1995). How novice physics students deal with explanations. International Journal of Science Education, 17(2), 255-269.
Treagust, D. F. (1988). Development and use of diagnostic instruments to evaluate students’misconceptions in science. International Journal of Science Education, 10, 159–169.
Treagust, D. F. (1995). Diagnostic assessment of students’ science knowledge. In S. M. Glynn & R. Duit (Eds.), Learning science in the school: Research reforming practice (pp.327-346), Mahwah, NJ: Erlbaum.
Treagust, D. F., & Haslam, F. (1987). Evaluating secondary students’ misconception of photosynthesis and respiration in plants using a two-tier diagnostic instrument. Journal of Biological Education, 21(3), 203-211.
Trumper, R., & Gorsky, P. (1997). A survey of biology students’ conceptions of force in preservice training for high school teachers. Research in Science and Technological Education, 15(2), 133-147.
Twigger, D., Byard, M., Driver, R., Draper, S., & Hartley, R. (1994). The conception of force and motion of students aged between 10 and 15 years: an interview study designed to guide instruction. International Journal of Science Education, 16(2), 215-229.
Watts, D. M. (1983). A study of schoolchildren’s alternative frameworks of the concept of force. European Journal of Science Education, 5(2), 217-230.
White, B. (1984). Designing computer games to help physics students understand Newton’s law of motion. Cognition and Instruction, 1(1), 69-108.
White, R. T., & Gunstone, R. F. (1992). Probing Understanding. Great Britain: Falmer Press.