研究生: |
邱玉山 Qiu, Yu-Shan |
---|---|
論文名稱: |
偶極-偶極交互作用誘發衰減隨凡德瓦力係數變化之研究 Study on the dipole-dipole interaction in-duced attenuation of various van der Waals coefficients |
指導教授: |
余怡德
Yu, Ite A. |
口試委員: |
陳泳帆
王立邦 陳應誠 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 75 |
中文關鍵詞: | 量子資訊 |
外文關鍵詞: | quantum information |
相關次數: | 點閱:9 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這篇論文的主要目的在於說明如何透過實驗驗證凡德瓦力係數和偶極-偶極交互作用(DDI)的理論值的正確性。我們會在光儲存期間,使用基於Lambda-type EIT的靜止光脈衝進行實驗,同時進行雙光子躍遷實驗,以驗證所得到的衰減係數是否與理論預測相符。
在這個實驗中,對相干態造成破壞的原因主要可分為三個因素。首先,Lambda-type EIT為基礎的靜止光脈衝在實驗中會形成具有玻色子特性的靜止暗態激子。其次,雙光子躍遷實驗中的自發輻射也是造成破壞的一個因素。最後,由於靜止暗態激子在雙光子躍遷實驗中被激發至雷德堡能階,形成雷德堡原子,這之間產生的偶極-偶極交互作用(DDI)也是一個重要的影響因素。
在進行靜止光脈衝加雙光子躍遷實驗之前,需要完成實驗條件的設置,並確保實驗系統的穩定性,以確保所得到的數據可靠。在第二章中,將涵蓋所有需要進行的實驗,包括相關理論和實驗所需的相關知識。第三章將介紹此實驗桌的系統和確認實驗系統穩定性的方法。第四章將詳細說明所提及的實驗會將最後進行的靜止光脈衝加雙光子躍遷實驗所需的條件都測量完,最後,第五章將解釋如何透過實驗證實凡德瓦力係數與偶極-偶極交互作用(DDI)之間的關係,並確保理論上的正確性。
The main purpose of this thesis is to describe on how to experimentally verify th-e theoretical values obtained for the Van der Waals coefficient and dipole-dipole interac-tion. This verification is conducted during the light storage period using Lambda ty-pe Electromagnetically Induced Transparency (EIT) based stationary light pulses. Si-multaneously, experiments involving two-photon transitions are carried out. The ob-tained decay coefficients are expected to align with the theoretical predictions.
In this experiment, there are three main factors causing disruption to the coherent state. Firstly, Lambda-type EIT-based stationary light pulses result in the formation of stationary dark-state polariton with bosonic characteristics. Secondly, spontaneous e-mission occurs in the two-photon transition experiment. Finally, the excitation of sta-tionary dark-state polariton to Rydberg levels forms Rydberg atoms, leading to di-pole-dipole interactions among these Rydberg atoms.
Prior to doing the experiment involving stationary light pulses and two-photon transitions, the experimental conditions must be set up, and the stability of the experi-mental system needs to be confirmed to ensure the credible of the obtained data. Cha-pter two will cover all the experiments that need to be done, and with the relevant theories and necessary understanding for the experiments. Chapter three will introduce the system of the experimental setup and the methods used to confirm the stability of the experimental system. Chapter four will finish the measurements of the conditions re-quired for the stationary light pulses and two-photon transition experiment. Finally, chapter five explains how to experimentally verify the relationship between the Van der Waals coefficient and dipole-dipole interaction, confirming its theoretical accuracy.
[1] B. Kim, K.-T. Chen, C.-Y. Hsu, S.-S. Hsiao, Y.-C. Tseng, C.-Y. Lee, S.-L. Liang, Y.- H. Lai, J. Ruseckas, G. Juzeliūnas, and I. A. Yu, “Effect of laser-frequency fluctuation on the decay rate of rydberg coherence,” Phys. Rev. A, vol. 100, p. 013815 (2019)
[2] T. G. Walker and M. Saffman,“Consequences of zeeman degeneracy for the van der waals blockade between Rydberg atoms,”Phys. Rev. A 77, 032723 (2008).
[3] B. Kim, K.-T. Chen, S.-S. Hsiao, S.-Y. Wang, K.-B. Li, J. Ruseckas, G. Juzeliūnas, T. Kirova, M. Auzinsh, Y.-C. Chen, Y.-F. Chen, and I. A. Yu,“A weakly-interacting many-body system of Rydberg polaritons based on electromagnetically induced transparency,”Commun. Phys. 4, 101 (2021).
[4]. B. Kim, K.-T. Chen, K-Y Chen, Y-S Chiu, C-Y Hsu, Y-H Chen, and I. A. Yu, “Experimental demonstration of stationary dark-state polaritons dressed by dipole-dipole interaction ” Phys. Rev. Let. 131, 133001 (2023).
[5]. J. D. Pritchard, “Cooperative optical non-linearity in a blockaded rydberg ensem- ble,” (2012).
[6]. S.-W. Su, Y.-H. Chen, S.-C. Gou, T.-L. Horng, and I. A. Yu,“Dynamics of slow light and light storage in a Doppler-broadened electromagnetically- induced-transparency medium: A numerical approach,”Phys. Rev. A 83, 013827 (2011).
[7]. 廖文德, “電磁波誘發透明介質中靜止光脈衝的理論研究”, 國立清華大學, 碩士論文 (2008)
[8]. 梁世倫, “冷原子的雷德堡態EIT光譜”, 國立清華大學, 碩士論文 (2016)
[9]. 曾于誌, “雷德堡 EIT 的雙光子共振穩頻”, 國立清華大學, 碩士論文 (2018)
[10]. 蕭世熙, “雷德堡暗態激子的偶極交互作用與玻色-愛因斯坦凝態之理論研究”, 國立清華大學, 碩士論文 (2020)
[11]. 王聖揚, “雷德堡電磁波誘發透明之偶極交互作用量測及暗態激子的熱平衡過程研究”, 國立清華大學, 碩士論文 (2020)
[12]. 陳可唐 “雷德堡激子的實驗與理論研究”, 國立清華大學, 博士論文 (2022)
[13]. 陳奎佑 “實現靜止雷德堡激子”, 國立清華大學, 碩士論文 (2022)
[14]. 楊景任 “穩態形式靜止光系統之理論研究” , 國立清華大學, 碩士論文 (2022)
[15]. 謝沛軒 “雙Λ型及階梯形四波混頻機制之理論研究”, 國立清華大學, 碩士論文(2023)
[16]. I. I. Beterov, I. I. Ryabtsev, D. B. Tretyakov, and V. M. Entin, “Quasiclassical calculations of blackbody-radiation-induced depopulation rates and effective lifetimes of Rydberg nS, nP, and nD alkali-metal atoms with n≤80,” Phys. Rev. A 79, 052504 (2009)
[17]. N. Šibalić, J. D. Pritchard, C. S. Adams, and K. J. Weatherill, “ARC: An open-source library for calcula- ting properties of alkali Rydberg atoms,” Comput. Phys. Commun. 220, 319 (2017).