研究生: |
李岦瑾 Li, Li-Chin |
---|---|
論文名稱: |
結合3D列印犧牲模板法與冷凍鑄造法製備多尺度多孔矽藻土應用於廢水處理 Combining 3D-printed Sacrificial Templating Method with Freeze Casting Technique to Fabricate Multi-scale Porous Diatomite for Wastewater Treatment |
指導教授: |
陳柏宇
Chen, Po-Yu |
口試委員: |
吳芳賓
Wu, Fan-Bean 鍾采甫 Chung, Tsai-Fu |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 122 |
中文關鍵詞: | 多尺度孔洞 、冷凍鑄造法 、3D列印犧牲模板法 、多孔結構 |
外文關鍵詞: | multi-scale material, freeze casting, 3D-printed sacrificial templating, porous structure |
相關次數: | 點閱:62 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多尺度多孔材料近年來備受重視,相較於單一孔洞尺度的多孔材料,展現了更高的孔隙率、表面積且優異的滲透率,能廣泛應用在吸附、過濾、絕熱以及有毒汙水處理等領域。本研究提供了一個新穎的多階層多孔結構製備方法,以矽藻土為原料,結合3D列印犧牲模板法及冷凍鑄造法,我們成功開發出雙犧牲模板法以進行多階層多孔結構之製備。本研究所製備的多階層多孔結構共具有三種孔洞尺度,其中尺度橫跨:毫米、微米至奈米等級。透過設計不同體積分率的3D列印犧牲模板與調整冷凍鑄造之冷卻速率,我們可以控制不同尺度下的通道大小,以實現多種孔徑的組合。我們使用雷射共軛交顯微鏡(Laser Confocal Microscope)、掃描式電子顯微鏡(SEM)和微米級電腦斷層掃描(μ-CT)表徵了三種尺度的孔徑大小,並以X光繞射儀進行材料分析。本研究使用天然且環保的矽藻土為主要材料,利用矽藻土表面具有奈米級孔洞和表面自帶的氫氧基等優勢,我們針對帶正電的有毒染料溶液行進行染料的吸附實驗,比較了不同尺度的孔徑組合下,多階層多孔矽藻土之滲透率以及對亞甲基藍染料溶液之染料移除能力及移除效率。總結來說,這項研究成功製備了具有三種孔洞尺度的多階層多孔材並展現了其對染料汙水處理的潛力,透過研究不同孔徑組合下的吸附行為、染料移除能力和滲透性,我們可以進一步調整多階層多孔材料的結構設計以優化滲透率與吸附效率。
In recent years, multi-scale hierarchical porous structures have garnered significant attention, offering enhanced porosity, surface area, and permeability compared to single-scale porous structures. These properties make them widely applicable in fields such as adsorption, filtration, thermal insulation, and toxic wastewater treatment. In this study, a novel method for fabricating of multi-scale hierarchical porous structures has been introduced, utilizing diatomite as the raw material. A combination of 3D-printed sacrificial templating method and freeze casting technique has been employed to develop a dual-templating approach for multi-scale porous structure preparation. The resulting porous structures feature three distinct pore size scales, ranging from millimeters, micrometers, and nanometers. Additionally, by varying the volume fractions of 3D-printed templates and adjusting the cooling rates during freeze casting, channel sizes can be controlled at different scales to achieve various pore size combinations. Characterization of the pore sizes across these scales was conducted using laser confocal microscopy, scanning electron microscopy (SEM), and micro-computed tomography (μ-CT), with material analysis performed using X-ray diffraction. Moreover, the nano-scale pores and inherent hydroxyl groups on the surface of diatomite were leveraged to conduct dye adsorption experiments using positively charged methylene blue dye solution. The permeability, dye removal efficiency, and dye adsorption capacity of multi-scale porous diatomite were also compared under various pore size combinations. In summary, this study successfully constructs multi-scale porous structures with three different pore size scales. The structural design of the multi-scale hierarchical structure can be further optimized by studying the adsorption behavior, dye removal capacity, and permeability under different pore size combinations.
[1] a)M. Hendriks, S. K. Ramasamy, Frontiers in Cell and Developmental Biology 2020, 8, 602278; b)K. Persson, 2000; c)C.-Y. Sun, C. A. Stifler, R. V. Chopdekar, C. A. Schmidt, G. Parida, V. Schoeppler, B. I. Fordyce, J. H. Brau, T. Mass, S. Tambutté, Proceedings of the National Academy of Sciences 2020, 117, 30159.
[2] D. Jeyachandran, M. Cerruti, Advanced Engineering Materials 2023, 25, 2201743.
[3] J. Chen, M. Hendriks, A. Chatzis, S. K. Ramasamy, A. P. Kusumbe, Journal of Bone and Mineral Research 2020, 35, 2103.
[4] a)J. Wang, Q. Guo, W. Chen, H. Liu, Applied Sciences 2022, 12; b)K. Metze, G. C. Young, S. Dey, A. D. Rogers, D. Exton, Plos One 2017, 12; c)U. Wolfram, M. Peña Fernández, S. McPhee, E. Smith, R. J. Beck, J. D. Shephard, A. Ozel, C. S. Erskine, J. Büscher, J. Titschack, J. M. Roberts, S. J. Hennige, Scientific Reports 2022, 12.
[5] a)Q. Sun, Z. Dai, X. Meng, F.-S. Xiao, Chemical Society Reviews 2015, 44, 6018; b)I. G. Clayson, D. Hewitt, M. Hutereau, T. Pope, B. Slater, Advanced Materials 2020, 32.
[6] a)I. Nelson, S. E. Naleway, Journal of Materials Research and Technology 2019, 8, 2372; b)E. Munch, E. Saiz, A. P. Tomsia, S. Deville, Journal of the American Ceramic Society 2009, 92, 1534; c)G. Shao, D. A. H. Hanaor, X. Shen, A. Gurlo, Advanced Materials 2020, 32.
[7] W. Li, K. Lu, J. Walz, International materials reviews 2012, 57, 37.
[8] a)J.-Y. Jung, S. E. Naleway, Y. N. Maker, K. Y. Kang, J. Lee, J. Ha, S. S. Hur, S. Chien, J. McKittrick, ACS Biomaterials Science & Engineering 2019, 5, 2122; b)J.-Y. Ho, T.-T. Chang, P.-C. Ho, H.-K. Chang, P.-Y. Chen, Materials Chemistry and Physics 2024, 314; c)J. V. John, A. McCarthy, H. Wang, Z. Luo, H. Li, Z. Wang, F. Cheng, Y. S. Zhang, J. Xie, Advanced Healthcare Materials 2021, 10.
[9] a)J. Feng, J. Fu, X. Yao, Y. He, International Journal of Extreme Manufacturing 2022, 4; b)D. W. Abueidda, M. Bakir, R. K. Abu Al-Rub, J. S. Bergström, N. A. Sobh, I. Jasiuk, Materials & Design 2017, 122, 255.
[10] a)H. Montazerian, M. G. A. Mohamed, M. M. Montazeri, S. Kheiri, A. S. Milani, K. Kim, M. Hoorfar, Acta Biomaterialia 2019, 96, 149; b)S. Ma, Q. Tang, Q. Feng, J. Song, X. Han, F. Guo, Journal of the Mechanical Behavior of Biomedical Materials 2019, 93, 158.
[11] a)S. É. Ivanov, A. V. Belyakov, Glass and Ceramics 2008, 65, 48; b)P. Zahajská, S. Opfergelt, S. C. Fritz, J. Stadmark, D. J. Conley, Quaternary Research 2020, 96, 48.
[12] Y. Al-Degs, M. Khraisheh, M. Tutunji, Water Research 2001, 35, 3724.
[13] a)A. F. Danil de Namor, A. El Gamouz, S. Frangie, V. Martinez, L. Valiente, O. A. Webb, J Hazard Mater 2012, 241-242, 14; b)M. A. Al-Ghouti, M. A. M. Khraisheh, M. N. M. Ahmad, S. Allen, Journal of Hazardous Materials 2009, 165, 589.
[14] a)N. Kleger, C. Minas, P. Bosshard, I. Mattich, K. Masania, A. R. Studart, Sci Rep 2021, 11, 22316; b)L. Alison, S. Menasce, F. Bouville, E. Tervoort, I. Mattich, A. Ofner, A. R. Studart, Sci Rep 2019, 9, 409.
[15] a)S. B. Patil, H. S. Chore, Advances in environmental research 2014, 3, 45; b)E. A. Boucher, Journal of materials Science 1976, 11, 1734.
[16] a)D. S. Schwartz, D. S. Shih, A. G. Evans, H. N. Wadley, presented at MRS Symp. Proc, 1998; b)Y. Lv, B. Wang, G. Liu, Y. Tang, E. Lu, K. Xie, C. Lan, J. Liu, Z. Qin, L. Wang, Front Bioeng Biotechnol 2021, 9, 641130; c)K. Ishizaki, S. Komarneni, M. Nanko, Porous Materials: Process technology and applications, Vol. 4, Springer science & business media, 2013.
[17] a)E. Pérez-Mayoral, I. Matos, M. Bernardo, I. Fonseca, Catalysts 2019, 9; b)Q.-L. Zhu, Q. Xu, Chem 2016, 1, 220; c)M. Eddaoudi, ACS Publications, 2005.
[18] a)D. Qin, N. Wang, X.-G. You, A.-D. Zhang, X.-G. Chen, Y. Liu, Biomaterials Science 2022, 10, 318; b)D. B. Burr, in Basic and applied bone biology, Elsevier, 2019.
[19] a)K. Shimizu, A. Ito, T. Yoshida, Y. Yamada, M. Ueda, H. Honda, Journal of Biomedical Materials Research Part B: Applied Biomaterials 2007, 82B, 471; b)N. H. Hart, S. Nimphius, T. Rantalainen, A. Ireland, A. Siafarikas, R. Newton, Journal of musculoskeletal & neuronal interactions 2017, 17, 114.
[20] C. Chen, L. Hu, Advanced Materials 2020, 33.
[21] A. Tampieri, S. Sprio, A. Ruffini, G. Celotti, I. G. Lesci, N. Roveri, Journal of Materials Chemistry 2009, 19.
[22] a)G. Tsoumis, Science and technology of wood: structure, properties, utilization, Vol. 115, Van Nostrand Reinhold New York, 1991; b)C. Chen, Y. Kuang, S. Zhu, I. Burgert, T. Keplinger, A. Gong, T. Li, L. Berglund, S. J. Eichhorn, L. Hu, Nature Reviews Materials 2020, 5, 642.
[23] a)A.-j. Wang, T. Paterson, R. Owen, C. Sherborne, J. Dugan, J.-m. Li, F. Claeyssens, Materials Science and Engineering: C 2016, 67, 51; b)X. Zhang, F. Ma, S. Yin, C. D. Wallace, M. R. Soltanian, Z. Dai, R. W. Ritzi, Z. Ma, C. Zhan, X. Lü, Applied Energy 2021, 303.
[24] R. Schechter, J. Gidley, AIChE Journal 1969, 15, 339.
[25] a)J. Zhao, N. Dehbari, W. Han, L. Huang, Y. Tang, Materials & Design 2015, 86, 14; b)R. Chen, C. A. Wang, Y. Huang, L. Ma, W. Lin, Journal of the American Ceramic Society 2007, 90, 3478.
[26] a)S. Deville, Materials 2010, 3, 1913; b)S. Deville, Advanced Engineering Materials 2008, 10, 155.
[27] S. Roy, A. Wanner, Composites Science and Technology 2008, 68, 1136.
[28] K. Yin, K. Ji, L. S. Littles, R. Trivedi, A. Karma, U. G. Wegst, Proceedings of the National Academy of Sciences 2023, 120, e2210242120.
[29] Y. Shao, M. F. El‐Kady, C. W. Lin, G. Zhu, K. L. Marsh, J. Y. Hwang, Q. Zhang, Y. Li, H. Wang, R. B. Kaner, Advanced Materials 2016, 28, 6719.
[30] P.-Y. Chen, H.-K. Chang, in Bioceramics, Biomimetic and Other Compatible Materials Features for Medical Applications, Springer, 2023.
[31] Y. H. Koh, E. J. Lee, B. H. Yoon, J. H. Song, H. E. Kim, H. W. Kim, Journal of the American Ceramic Society 2006, 89, 3646.
[32] K. Araki, J. W. Halloran, Journal of the American Ceramic Society 2005, 87, 1859.
[33] A. Szepes, A. Fehér, P. Szabó‐Révész, J. Ulrich, Chemical Engineering & Technology 2007, 30, 511.
[34] T. Ohji, M. Fukushima, International Materials Reviews 2012, 57, 115.
[35] D. Chakravarty, H. Ramesh, T. N. Rao, Journal of the European Ceramic Society 2009, 29, 1361.
[36] a)M. Yang, N. Zhao, Y. Cui, W. Gao, Q. Zhao, C. Gao, H. Bai, T. Xie, ACS Nano 2017, 11, 6817; b)P.-C. Ho, H.-K. Chang, P.-Y. Chen, presented at TMS Annual Meeting & Exhibition, 2023; c)X.-H. Li, P. Liu, X. Li, F. An, P. Min, K.-N. Liao, Z.-Z. Yu, Carbon 2018, 140, 624.
[37] U. G. Wegst, M. Schecter, A. E. Donius, P. M. Hunger, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2010, 368, 2099.
[38] G. Bolling, J. Cisse, Journal of Crystal Growth 1971, 10, 56.
[39] D. M. Stefanescu, B. Dhindaw, S. Kacar, A. Moitra, Metallurgical Transactions A 1988, 19, 2847.
[40] M.-A. Shahbazi, M. Ghalkhani, H. Maleki, Advanced Engineering Materials 2020, 22.
[41] Q. Zhang, F. Zhang, S. P. Medarametla, H. Li, C. Zhou, D. Lin, Small 2016, 12, 1702.
[42] S. Y. Chin, V. Dikshit, B. Meera Priyadarshini, Y. Zhang, Micromachines 2020, 11.
[43] N. Kränzlin, M. Niederberger, Materials Horizons 2015, 2, 359.
[44] a)Z. Gan, M. D. Turner, M. Gu, Science advances 2016, 2, e1600084; b)L. Han, S. Che, Adv Mater 2018, 30, e1705708.
[45] a)S. Yu, J. Sun, J. Bai, Materials & Design 2019, 182; b)O. Al-Ketan, D. W. Lee, R. Rowshan, R. K. Abu Al-Rub, J Mech Behav Biomed Mater 2020, 102, 103520.
[46] O. Al-Ketan, R. K. Abu Al-Rub, Advanced Engineering Materials 2019, 21.
[47] F. P. Melchels, A. M. Barradas, C. A. van Blitterswijk, J. de Boer, J. Feijen, D. W. Grijpma, Acta Biomater 2010, 6, 4208.
[48] L. Wu, W. Zhang, D. Zhang, Small 2015, 11, 5004.
[49] D. Ali, S. Sen, Journal of the mechanical behavior of biomedical materials 2017, 75, 262.
[50] A. Datta, T. K. Marella, A. Tiwari, S. P. Wani, Application of Microalgae in Wastewater Treatment: Volume 1: Domestic and Industrial Wastewater Treatment 2019, 19.
[51] T. Qian, J. Li, Y. Deng, Scientific Reports 2016, 6.
[52] a)E. De Tommasi, J. Gielis, A. Rogato, Marine genomics 2017, 35, 1; b)M. P. Bhat, U. Uthappa, M. D. Kurkuri, in Bioprospecting Algae for Nanosized Materials, Springer, 2022.
[53] I. Rea, L. De Stefano, Sensors 2019, 19.
[54] X. Zhong, Y. Shen, S. Zhao, X. Chen, C. Han, D. Wei, P. Fang, D. Meng, Ceramics International 2019, 45, 2556.
[55] O. Hadjadj-Aoul, R. Belabbes, M. Belkadi, M. Guermouche, Applied surface science 2005, 240, 131.
[56] M. S. Aw, S. Simovic, Y. Yu, J. Addai-Mensah, D. Losic, Powder Technology 2012, 223, 52.
[57] N. Inchaurrondo, J. Font, C. P. Ramos, P. Haure, Applied Catalysis B: Environmental 2016, 181, 481.
[58] C. Li, M. Wang, B. Xie, H. Ma, J. Chen, Renewable Energy 2020, 147, 265.
[59] J. Fang, Q. Liu, W. Zhang, J. Gu, Y. Su, H. Su, C. Guo, D. Zhang, Journal of Materials Chemistry A 2017, 5, 17817.
[60] a)E. Erdem, G. Çölgeçen, R. Donat, Journal of Colloid and Interface Science 2005, 282, 314; b)M. Khraisheh, M. Al-Ghouti, S. Allen, M. Ahmad, Water Research 2005, 39, 922; c)G. Sriram, M. Kigga, U. T. Uthappa, R. M. Rego, V. Thendral, T. Kumeria, H.-Y. Jung, M. D. Kurkuri, Advances in Colloid and Interface Science 2020, 282.
[61] a)M. Al-Ghouti, M. Khraisheh, S. Allen, M. Ahmad, Journal of environmental management 2003, 69, 229; b)Z.-H. Yu, S.-R. Zhai, H. Guo, T.-M. lv, Y. Song, F. Zhang, H.-C. Ma, Journal of Sol-Gel Science and Technology 2018, 88, 541.
[62] J. Zmywaczyk, P. Zbińkowski, H. Smogór, A. Olejnik, P. Koniorczyk, International Journal of Thermophysics 2017, 38.
[63] E. Delebecq, J.-P. Pascault, B. Boutevin, F. Ganachaud, Chemical Reviews 2012, 113, 80.
[64] Z. Mete, Akdeniz Univ. Eng. Fac. J 1988, 1, 184.
[65] R. Zheng, Z. Ren, H. Gao, A. Zhang, Z. Bian, Journal of Alloys and Compounds 2018, 757, 364.
[66] a)X. Fu, Z. Liu, B. Wu, J. Wang, J. Lei, Journal of Thermal Analysis and Calorimetry 2015, 123, 1173; b)A. Touina, S. Chernai, B. Mansour, H. Hadjar, A. Ouakouak, B. Hamdi, SN Applied Sciences 2021, 3.
[67] G. Yao, J. Lei, X. Zhang, Z. Sun, S. Zheng, S. Komarneni, Materials Research Bulletin 2018, 107, 132.
[68] T. Benkacem, B. Hamdi, A. Chamayou, H. Balard, R. Calvet, Powder Technology 2016, 294, 498.
[69] A. H. Ahmed, M. S. Thabet, Journal of Molecular Structure 2011, 1006, 527.
[70] S. Mintova, M. Jaber, V. Valtchev, Chemical Society Reviews 2015, 44, 7207.
[71] a)J. Shao, T. Fu, Q. Ma, Z. Ma, C. Zhang, Z. Li, Microporous and Mesoporous Materials 2019, 273, 122; b)Q. Wang, J. Zhang, J. C. M. Ho, Construction and Building Materials 2020, 234.
[72] a)R. T. Pabalan, F. P. Bertetti, Reviews in mineralogy and geochemistry 2001, 45, 453; b)L. Price, K. Leung, A. Sartbaeva, Magnetochemistry 2017, 3.