簡易檢索 / 詳目顯示

研究生: 林東岳
Lin, Tung-Yueh
論文名稱: 尋找人類組蛋白去甲基酶KDM4抑制劑並加以修飾進而應用在治療去勢抗性前列腺癌
Discovery and Modification of KDM4 Inhibitors in Castration-Resistant Prostate Cancer Treatment
指導教授: 王雯靜
Wang, Wen-Ching
口試委員: 藍忠昱
Lan, Chung-Yu
蒙國光
Mong, Kwok-Kong
陳怡榮
Chen, Yi-Rong
王鴻俊
Wang, Hung-Jung
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 67
中文關鍵詞: 人類組蛋白去甲基酶抑制劑去勢抗性前列腺癌
外文關鍵詞: KDM4, Inhibitors, CRPC
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類組蛋白去甲基酶4 (KDM4s/JMJD2s) 家族的成員 (members) 由KDM4A-D所組成,且含有Jumonji C功能區 (domain),KDM4A-C常大量表現在好幾種癌症中,像是乳癌、肺癌以及前列腺癌,KDM4A 及KDM4B可做為雄性激素受體 (androgen receptor, AR)的共激活因子 (coactivator) 來調控雄性激素受體依賴型 (AR-dependent) 基因的轉錄而促進癌細胞有效的生長。我們已解出KDM4B的蛋白質結構,敲減 (knockdown) KDM4A及KDM4B基因能顯著地導致LNCaP細胞株及去勢抗性前列腺癌 (castration-resistant prostate cancer, CRPC) 細胞株C4-2B進入細胞凋亡,這結果指出KDM4A及KDM4B可做為對抗去勢抗性前列腺癌的潛力指標,我們已發現天然化合物M2可有效抑制KDM4A-C,在這研究中我們發展了包覆M2的奈米微粒 (nanoparticle formulation that encapsulates M2, NP-M2) 能顯著地增加對癌細胞的毒殺性,在C4-2B異種移植小鼠模型中 (mouse xenograft model ) ,奈米微粒M2治療組和對照組相比較能顯著地減少腫瘤的生長,結合奈米微粒M2與enzalutamide (已被FDA核可用於治療轉移型前列腺癌) 有加成作用而減少腫瘤生長,與單獨奈米微粒M2 (p = 0.0001) 及enzalutamide (p = 0.056) 治療組比較都有顯著差異 (p = 0.0002) ,基於M2化合物的骨架,我們已發展出新穎的抑制劑: BPRKD008S0 (KDM4A IC50 = 4.48 μM; C4-2B IC50 = 5.41 μM) 和BPRKD022S0 (KDM4A IC50 = 0.86 μM; C4-2B IC50 = 10.32 μM) 對於KDM4A及C4-2B細胞有很好的抑制力,我們已經解出KDM4A-BPRKD063S0 (KDM4A IC50 = 0.56 μM, C4-2B IC50 > 25 μM) 的複合物晶體結構,最高解析度可達3.25 Å,在化學結構與效能關係分析中 (Structure Activity Relationship, SAR) 指出重要的小分子片段(化學官能基)可與KDM4A相互作用,在這研究結果中提供了一個新穎的KDM4抑制劑發展見解。


    The human histone lysine demethylase 4 (KDM4s/JMJD2s) family that consists of the Jumonji C domain including four members (KDM4A-D). Of those, KDM4A-C members are overexpressed in several types of cancers, including breast, lung and prostate cancers. KDM4A and KDM4B function as a coactivator of androgen receptor (AR) to mediate AR-dependent transcription regulation. We have determined the structure of KDM4B. Knockdown of KDM4A and KDM4B significantly leads to apoptosis in LNCaP and that in C4-2B, a castration-resistant prostate cancer (CRPC) line, suggesting a potential therapeutic target against CRPC. We have also identified a nature compound M2 with a good inhibitory effect toward KDM4A-C. In this study, a nanoparticle formulation that encapsulates M2 (NP-M2) was developed, showing an increased cytotoxic effect in C4-2B cells. In C4-2B xenografts model, the NP-M2 treatment significantly impaired tumor growth as compared to the vehicle group (p = 0.0002). A combined treatment using NP-M2 and enzalutamide (an FDA-approved drug to treat metastatic PCa) had an additive effect to reduce tumor growth as compared with the NP-M2 group (p = 0.0001) or enzalutamide treatment (p = 0.056) alone. Based on the M2 skeleton, novel inhibitors were developed: BPRKD008S0 (KDM4A IC50 = 4.48 μM; C4-2B IC50 = 5.41 μM) and BPRKD022S0 (KDM4A IC50 = 0.86 μM; C4-2B IC50 = 10.32 μM) have good inhibitory effect toward KDM4A and C4-2B cells. We have determined a complexed KDM4A- BPRKD063S0 structure (KDM4A IC50 = 0.56 μM, C4-2B IC50 > 25 μM) at a resolution of 3.25 Å. Structure-activity-relationship (SAR) analysis revealed important moieties that interact with KDM4A. These results provide new insight into the development of pan KDM4 inhibitors.

    致謝 I 摘要 II Abstract III Abbreviation IV Contents V 1. Introduction 1 1.1 Epigenetic modification 1 1.2 Histone modification 1 1.3 Histone methylation 2 1.4 Histone demethylase 3 1.5 Lysine(K)-specific demethylase 4 3 1.6 The relationship between cancer and KDM4 family 4 1.6.1 KDM4 family regulate the progression of prostate cancer 5 1.6.2 Current KDM4 inhibitors 5 1.7 The treatment methods of prostate cancer and castration-resistant prostate cancer (CRPC) 6 1.8 Specific aims 7 2. Materials and methods 8 2.1 Cloning of human KDM4A-C and KDM6A 8 2.2 Protein expression of recombinant KDM4A-C and KDM6A 9 2.3 Protein purification 9 2.4 Gel filtration chromatography 10 2.5 Determination of protein concentration 10 2.6 Formaldehyde dehydrogenase (FDH)-coupled demethylase assay 10 2.7 Inhibitor screening of KDM4A 11 2.8 FDH-inhibition assay 12 2.9 IC50 of inhibitor toward KDM4A 12 2.10 In vitro demethylase assay 12 2.11 Modification of KDM4A crystallization condition 13 2.12 Crystal X-ray diffraction and data collection 14 2.13 KDM4A model building and refinement 14 2.14 Docking analysis through discovery studio software 15 2.15 Pharmacophore modeling 15 2.16 Cell culture 15 2.17 MTT assay 16 2.18 C4-2B xenografts model 16 2.19 Immunohistochemistry analysis of tumor sections 16 3. Results 17 3.1 The effect of nanoparticle formulation encapsulated M2 in C4-2B cells xenograft model 17 3.2 Immunohistochemistry analysis of Ki67 and CD31 marker in xenograft tumor sections 17 3.3 Cloning of human KDM4A 1-347 18 3.4 Protein expression and purification of recombinant of KDM4A-C and KDM6A 19 3.5 Develop novel inhibitors based on optimizing M2 skeleton of trihydroxyphenyl 19 3.5.1 Inhibitory effect toward FDH activity 19 3.5.2 Initial inhibitors screening of trihydroxyphenyl analogs based on KDM4A 20 3.5.3 SAR analysis of (4-phenylpiperazine-1-yl)(hydroxyphenyl)methanone analogues based on KDM4A and C4-2B IC50 20 3.5.4 SAR analysis of (E)-N'-(hydroxybenzylidene)isonicotinohydrazide based on KDM4A and C4-2B IC50 22 3.5.5 SAR analysis of dihydroxyphenyl analogues based on KDM4A and C4-2B IC50 23 3.5.6 Potent inhibitors were confirmed by in vitro demethylase assay 24 3.5.7 Specificity of inhibitors for KDM4A-C compared to KDM6A 24 3.6 KDM4A crystallization, data collection and structure refinement 25 3.6.1 Crystallization of KDM4A 25 3.6.2 X-ray diffraction data collection and process 25 3.6.3 Structure model building, refinement and validation 25 3.7 Analysis of KDM4A and BPRKD063S0 complex structure 26 3.8 Pharmacophore analysis of current KDM4 inhibitors and BPRKD063S0 26 4. Discussions 28 4.1 NP-M2 treatment on CRPC 28 4.2 SAR analysis and specific inhibition 28 4.3 Docking and pharmacophore model of BPRKD008S0, BPRKD022S0 and BPRKD063S0 29 5. References 30 6. Tables 35 Table 1. Structure of compounds utilized in this study 35 Table 2. Data collection and refinement statistics of KDM4A-BPRKD063S0 structure 41 Table 3. KDM4A inhibition and C4-2B cell cytotoxicity of (4-phenylpiperazine-1-yl)(hydroxyphenyl)methanone analogues 42 Table 4. KDM4A inhibition and C4-2B cell cytotoxicity of (E)-N'-(hydroxybenzylidene)isonicotinohydrazide analogues 44 Table 5. KDM4A inhibition and C4-2B cell cytotoxicity of dihydroxyphenyl analogues 45 Table 6. Specificity of inhibitors for KDM4A-C compared to KDM6A 46 7. Figures 47 Figure 1. Superposition of KDM4 inhibitors in KDM4A active site. 47 Figure 2. Development of novel inhibitors based on the M2 skeleton of trihydroxyphenyl. 48 Figure 3. The mechanism of FDH-coupled demethylase assay. 49 Figure 4. Schematic representation of drug-treatment timeline in the C4-2B xenograft model. 50 Figure 5. The effect of NP-M2, enzalutamide and combined treatment on tumor growth. 51 Figure 6. Immunohistochemistry analysis of C4-2B xenograft tumor tissue. 52 Figure 7. Human KDM4A 1-347 cloning. 53 Figure 8. Purification of recombinant KDM4A, KDM4B, KDM4C and KDM6A. 54 Figure 9. Inhibitory effect toward FDH activity. 55 Figure 10. Screening trihydroxyphenyl analogues by FDH-coupled demethylase assay. 56 Figure 11. SAR analysis of (4-phenylpiperazine-1-yl)(hydroxyphenyl)methanone analogues based on KDM4A IC50. 57 Figure 12. SAR analysis of (4-phenylpiperazine-1-yl)(hydroxyphenyl)methanone analogues based on C4-2B IC50. 58 Figure 13. SAR analysis of (E)-N'-(hydroxybenzylidene)isonicotinohydrazide analogues based on KDM4A IC50. 59 Figure 14. SAR analysis of (E)-N'-(hydroxybenzylidene)isonicotinohydrazide analogues based on C4-2B IC50. 60 Figure 15. SAR analysis of dihydroxyphenyl analogues based on KDM4A IC50. 61 Figure 16. SAR analysis of dihydroxyphenyl analogues based on C4-2B IC50. 62 Figure 17. Potent inhibitors were confirmed via in vitro demethylase assay. 63 Figure 18. Crystals (A) and diffraction pattern (B) of the KDM4A-BPRKD063S0 complex. 64 Figure 19. (A) The 2Fo-Fc electron density map of BPRKD063S0 is shown in the blue mesh (2Fo-Fc was contoured at the 1.1 σ level). (B)BPRKD063S0 interacts with Ni(II) ion and make H-bond with Lys206 and Tyr132. 65 Figure 20. KDM4-inhibitors interaction profile. 66 Figure 21. Analysis of docking and pharmacophore model. 67

    1. Eccleston A, Cesari F, Skipper M (2013) Transcription and epigenetics. Nature 502: 461.
    2. Crews D, McLachlan JA (2006) Epigenetics, evolution, endocrine disruption, health, and disease. Endocrinology 147: S4-10.
    3. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, et al. (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 102: 10604-10609.
    4. Kaminsky ZA, Tang T, Wang SC, Ptak C, Oh GH, et al. (2009) DNA methylation profiles in monozygotic and dizygotic twins. Nat Genet 41: 240-245.
    5. Javierre BM, Fernandez AF, Richter J, Al-Shahrour F, Martin-Subero JI, et al. (2010) Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res 20: 170-179.
    6. Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28: 1057-1068.
    7. Chen QW, Zhu XY, Li YY, Meng ZQ (2014) Epigenetic regulation and cancer (review). Oncol Rep 31: 523-532.
    8. Bhasin M, Reinherz EL, Reche PA (2006) Recognition and classification of histones using support vector machine. J Comput Biol 13: 102-112.
    9. Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184: 868-871.
    10. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389: 251-260.
    11. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403: 41-45.
    12. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21: 381-395.
    13. Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and Methylation of Histones and Their Possible Role in the Regulation of Rna Synthesis. Proc Natl Acad Sci U S A 51: 786-794.
    14. Zhang Y, Reinberg D (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15: 2343-2360.
    15. Zhang X, Wen H, Shi X (2012) Lysine methylation: beyond histones. Acta Biochim Biophys Sin (Shanghai) 44: 14-27.
    16. Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, et al. (2009) Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459: 108-112.
    17. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, et al. (2007) High-resolution profiling of histone methylations in the human genome. Cell 129: 823-837.
    18. Bedford MT, Clarke SG (2009) Protein arginine methylation in mammals: who, what, and why. Mol Cell 33: 1-13.
    19. Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, et al. (2002) Active genes are tri-methylated at K4 of histone H3. Nature 419: 407-411.
    20. Liang G, Lin JC, Wei V, Yoo C, Cheng JC, et al. (2004) Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. Proc Natl Acad Sci U S A 101: 7357-7362.
    21. Ahmad K, Henikoff S (2002) The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell 9: 1191-1200.
    22. Allis CD, Bowen JK, Abraham GN, Glover CV, Gorovsky MA (1980) Proteolytic processing of histone H3 in chromatin: a physiologically regulated event in Tetrahymena micronuclei. Cell 20: 55-64.
    23. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, et al. (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119: 941-953.
    24. Upadhyay AK, Horton JR, Zhang X, Cheng X (2011) Coordinated methyl-lysine erasure: structural and functional linkage of a Jumonji demethylase domain and a reader domain. Curr Opin Struct Biol 21: 750-760.
    25. Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, et al. (2006) Histone demethylation by a family of JmjC domain-containing proteins. Nature 439: 811-816.
    26. Lohse B, Kristensen JL, Kristensen LH, Agger K, Helin K, et al. (2011) Inhibitors of histone demethylases. Bioorg Med Chem 19: 3625-3636.
    27. Klose RJ, Yamane K, Bae Y, Zhang D, Erdjument-Bromage H, et al. (2006) The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature 442: 312-316.
    28. Blair LP, Cao J, Zou MR, Sayegh J, Yan Q (2011) Epigenetic Regulation by Lysine Demethylase 5 (KDM5) Enzymes in Cancer. Cancers (Basel) 3: 1383-1404.
    29. Hong S, Cho YW, Yu LR, Yu H, Veenstra TD, et al. (2007) Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc Natl Acad Sci U S A 104: 18439-18444.
    30. Huang Y, Fang J, Bedford MT, Zhang Y, Xu RM (2006) Recognition of histone H3 lysine-4 methylation by the double tudor domain of JMJD2A. Science 312: 748-751.
    31. Adams-Cioaba MA, Min J (2009) Structure and function of histone methylation binding proteins. Biochem Cell Biol 87: 93-105.
    32. Bartova E, Stixova L, Galiova G, Harnicarova Horakova A, Legartova S, et al. (2011) Mutant genetic background affects the functional rearrangement and kinetic properties of JMJD2b histone demethylase. J Mol Biol 405: 679-695.
    33. Fodor BD, Kubicek S, Yonezawa M, O'Sullivan RJ, Sengupta R, et al. (2006) Jmjd2b antagonizes H3K9 trimethylation at pericentric heterochromatin in mammalian cells. Genes Dev 20: 1557-1562.
    34. Hillringhaus L, Yue WW, Rose NR, Ng SS, Gileadi C, et al. (2011) Structural and evolutionary basis for the dual substrate selectivity of human KDM4 histone demethylase family. J Biol Chem 286: 41616-41625.
    35. Berry WL, Janknecht R (2013) KDM4/JMJD2 histone demethylases: epigenetic regulators in cancer cells. Cancer Res 73: 2936-2942.
    36. Gray SG, Iglesias AH, Lizcano F, Villanueva R, Camelo S, et al. (2005) Functional characterization of JMJD2A, a histone deacetylase- and retinoblastoma-binding protein. J Biol Chem 280: 28507-28518.
    37. Zhang D, Yoon HG, Wong J (2005) JMJD2A is a novel N-CoR-interacting protein and is involved in repression of the human transcription factor achaete scute-like homologue 2 (ASCL2/Hash2). Mol Cell Biol 25: 6404-6414.
    38. Berry WL, Shin S, Lightfoot SA, Janknecht R (2012) Oncogenic features of the JMJD2A histone demethylase in breast cancer. Int J Oncol 41: 1701-1706.
    39. Li BX, Luo CL, Li H, Yang P, Zhang MC, et al. (2012) Effects of siRNA-mediated knockdown of jumonji domain containing 2A on proliferation, migration and invasion of the human breast cancer cell line MCF-7. Exp Ther Med 4: 755-761.
    40. Li BX, Zhang MC, Luo CL, Yang P, Li H, et al. (2011) Effects of RNA interference-mediated gene silencing of JMJD2A on human breast cancer cell line MDA-MB-231 in vitro. J Exp Clin Cancer Res 30: 90.
    41. Kim TD, Shin S, Berry WL, Oh S, Janknecht R (2012) The JMJD2A demethylase regulates apoptosis and proliferation in colon cancer cells. J Cell Biochem 113: 1368-1376.
    42. Fu L, Chen L, Yang J, Ye T, Chen Y, et al. (2012) HIF-1alpha-induced histone demethylase JMJD2B contributes to the malignant phenotype of colorectal cancer cells via an epigenetic mechanism. Carcinogenesis 33: 1664-1673.
    43. Li W, Zhao L, Zang W, Liu Z, Chen L, et al. (2011) Histone demethylase JMJD2B is required for tumor cell proliferation and survival and is overexpressed in gastric cancer. Biochem Biophys Res Commun 416: 372-378.
    44. Toyokawa G, Cho HS, Iwai Y, Yoshimatsu M, Takawa M, et al. (2011) The histone demethylase JMJD2B plays an essential role in human carcinogenesis through positive regulation of cyclin-dependent kinase 6. Cancer Prev Res (Phila) 4: 2051-2061.
    45. Beyer S, Kristensen MM, Jensen KS, Johansen JV, Staller P (2008) The histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF. J Biol Chem 283: 36542-36552.
    46. Pollard PJ, Loenarz C, Mole DR, McDonough MA, Gleadle JM, et al. (2008) Regulation of Jumonji-domain-containing histone demethylases by hypoxia-inducible factor (HIF)-1alpha. Biochem J 416: 387-394.
    47. Luo W, Chang R, Zhong J, Pandey A, Semenza GL (2012) Histone demethylase JMJD2C is a coactivator for hypoxia-inducible factor 1 that is required for breast cancer progression. Proc Natl Acad Sci U S A 109: E3367-3376.
    48. Coffey K, Rogerson L, Ryan-Munden C, Alkharaif D, Stockley J, et al. (2013) The lysine demethylase, KDM4B, is a key molecule in androgen receptor signalling and turnover. Nucleic Acids Res 41: 4433-4446.
    49. Chu CH, Wang LY, Hsu KC, Chen CC, Cheng HH, et al. (2014) KDM4B as a target for prostate cancer: structural analysis and selective inhibition by a novel inhibitor. J Med Chem 57: 5975-5985.
    50. Cloos PA, Christensen J, Agger K, Maiolica A, Rappsilber J, et al. (2006) The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature 442: 307-311.
    51. Duan L, Rai G, Roggero C, Zhang QJ, Wei Q, et al. (2015) KDM4/JMJD2 Histone Demethylase Inhibitors Block Prostate Tumor Growth by Suppressing the Expression of AR and BMYB-Regulated Genes. Chem Biol 22: 1185-1196.
    52. Chen YK, Bonaldi T, Cuomo A, Del Rosario JR, Hosfield DJ, et al. (2017) Design of KDM4 Inhibitors with Antiproliferative Effects in Cancer Models. ACS Med Chem Lett 8: 869-874.
    53. Cascella B, Lee SG, Singh S, Jez JM, Mirica LM (2017) The small molecule JIB-04 disrupts O2 binding in the Fe-dependent histone demethylase KDM4A/JMJD2A. Chem Commun (Camb) 53: 2174-2177.
    54. Rose NR, Ng SS, Mecinovic J, Lienard BM, Bello SH, et al. (2008) Inhibitor scaffolds for 2-oxoglutarate-dependent histone lysine demethylases. J Med Chem 51: 7053-7056.
    55. Hopkinson RJ, Tumber A, Yapp C, Chowdhury R, Aik W, et al. (2013) 5-Carboxy-8-hydroxyquinoline is a Broad Spectrum 2-Oxoglutarate Oxygenase Inhibitor which Causes Iron Translocation. Chem Sci 4: 3110-3117.
    56. Chang KH, King ONF, Tumber A, Woon ECY, Heightman TD, et al. (2011) Inhibition of histone demethylases by 4-carboxy-2,2'-bipyridyl compounds. ChemMedChem 6: 759-764.
    57. Korczynska M, Le DD, Younger N, Gregori-Puigjane E, Tumber A, et al. (2016) Docking and Linking of Fragments To Discover Jumonji Histone Demethylase Inhibitors. J Med Chem 59: 1580-1598.
    58. Bavetsias V, Lanigan RM, Ruda GF, Atrash B, McLaughlin MG, et al. (2016) 8-Substituted Pyrido[3,4-d]pyrimidin-4(3H)-one Derivatives As Potent, Cell Permeable, KDM4 (JMJD2) and KDM5 (JARID1) Histone Lysine Demethylase Inhibitors. J Med Chem 59: 1388-1409.
    59. Murray CW, Rees DC (2009) The rise of fragment-based drug discovery. Nat Chem 1: 187-192.
    60. Krishnan S, Collazo E, Ortiz-Tello PA, Trievel RC (2012) Purification and assay protocols for obtaining highly active Jumonji C demethylases. Anal Biochem 420: 48-53.
    61. Ng SS, Kavanagh KL, McDonough MA, Butler D, Pilka ES, et al. (2007) Crystal structures of histone demethylase JMJD2A reveal basis for substrate specificity. Nature 448: 87-91.
    62. Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276: 307-326.
    63. Collaborative Computational Project N (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50: 760-763.
    64. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53: 240-255.
    65. Lebedev AA, Vagin AA, Murshudov GN (2008) Model preparation in MOLREP and examples of model improvement using X-ray data. Acta Crystallogr D Biol Crystallogr 64: 33-39.
    66. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60: 2126-2132.
    67. Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, et al. (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 67: 355-367.

    QR CODE