研究生: |
林東岳 Lin, Tung-Yueh |
---|---|
論文名稱: |
尋找人類組蛋白去甲基酶KDM4抑制劑並加以修飾進而應用在治療去勢抗性前列腺癌 Discovery and Modification of KDM4 Inhibitors in Castration-Resistant Prostate Cancer Treatment |
指導教授: |
王雯靜
Wang, Wen-Ching |
口試委員: |
藍忠昱
Lan, Chung-Yu 蒙國光 Mong, Kwok-Kong 陳怡榮 Chen, Yi-Rong 王鴻俊 Wang, Hung-Jung |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 67 |
中文關鍵詞: | 人類組蛋白去甲基酶 、抑制劑 、去勢抗性前列腺癌 |
外文關鍵詞: | KDM4, Inhibitors, CRPC |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人類組蛋白去甲基酶4 (KDM4s/JMJD2s) 家族的成員 (members) 由KDM4A-D所組成,且含有Jumonji C功能區 (domain),KDM4A-C常大量表現在好幾種癌症中,像是乳癌、肺癌以及前列腺癌,KDM4A 及KDM4B可做為雄性激素受體 (androgen receptor, AR)的共激活因子 (coactivator) 來調控雄性激素受體依賴型 (AR-dependent) 基因的轉錄而促進癌細胞有效的生長。我們已解出KDM4B的蛋白質結構,敲減 (knockdown) KDM4A及KDM4B基因能顯著地導致LNCaP細胞株及去勢抗性前列腺癌 (castration-resistant prostate cancer, CRPC) 細胞株C4-2B進入細胞凋亡,這結果指出KDM4A及KDM4B可做為對抗去勢抗性前列腺癌的潛力指標,我們已發現天然化合物M2可有效抑制KDM4A-C,在這研究中我們發展了包覆M2的奈米微粒 (nanoparticle formulation that encapsulates M2, NP-M2) 能顯著地增加對癌細胞的毒殺性,在C4-2B異種移植小鼠模型中 (mouse xenograft model ) ,奈米微粒M2治療組和對照組相比較能顯著地減少腫瘤的生長,結合奈米微粒M2與enzalutamide (已被FDA核可用於治療轉移型前列腺癌) 有加成作用而減少腫瘤生長,與單獨奈米微粒M2 (p = 0.0001) 及enzalutamide (p = 0.056) 治療組比較都有顯著差異 (p = 0.0002) ,基於M2化合物的骨架,我們已發展出新穎的抑制劑: BPRKD008S0 (KDM4A IC50 = 4.48 μM; C4-2B IC50 = 5.41 μM) 和BPRKD022S0 (KDM4A IC50 = 0.86 μM; C4-2B IC50 = 10.32 μM) 對於KDM4A及C4-2B細胞有很好的抑制力,我們已經解出KDM4A-BPRKD063S0 (KDM4A IC50 = 0.56 μM, C4-2B IC50 > 25 μM) 的複合物晶體結構,最高解析度可達3.25 Å,在化學結構與效能關係分析中 (Structure Activity Relationship, SAR) 指出重要的小分子片段(化學官能基)可與KDM4A相互作用,在這研究結果中提供了一個新穎的KDM4抑制劑發展見解。
The human histone lysine demethylase 4 (KDM4s/JMJD2s) family that consists of the Jumonji C domain including four members (KDM4A-D). Of those, KDM4A-C members are overexpressed in several types of cancers, including breast, lung and prostate cancers. KDM4A and KDM4B function as a coactivator of androgen receptor (AR) to mediate AR-dependent transcription regulation. We have determined the structure of KDM4B. Knockdown of KDM4A and KDM4B significantly leads to apoptosis in LNCaP and that in C4-2B, a castration-resistant prostate cancer (CRPC) line, suggesting a potential therapeutic target against CRPC. We have also identified a nature compound M2 with a good inhibitory effect toward KDM4A-C. In this study, a nanoparticle formulation that encapsulates M2 (NP-M2) was developed, showing an increased cytotoxic effect in C4-2B cells. In C4-2B xenografts model, the NP-M2 treatment significantly impaired tumor growth as compared to the vehicle group (p = 0.0002). A combined treatment using NP-M2 and enzalutamide (an FDA-approved drug to treat metastatic PCa) had an additive effect to reduce tumor growth as compared with the NP-M2 group (p = 0.0001) or enzalutamide treatment (p = 0.056) alone. Based on the M2 skeleton, novel inhibitors were developed: BPRKD008S0 (KDM4A IC50 = 4.48 μM; C4-2B IC50 = 5.41 μM) and BPRKD022S0 (KDM4A IC50 = 0.86 μM; C4-2B IC50 = 10.32 μM) have good inhibitory effect toward KDM4A and C4-2B cells. We have determined a complexed KDM4A- BPRKD063S0 structure (KDM4A IC50 = 0.56 μM, C4-2B IC50 > 25 μM) at a resolution of 3.25 Å. Structure-activity-relationship (SAR) analysis revealed important moieties that interact with KDM4A. These results provide new insight into the development of pan KDM4 inhibitors.
1. Eccleston A, Cesari F, Skipper M (2013) Transcription and epigenetics. Nature 502: 461.
2. Crews D, McLachlan JA (2006) Epigenetics, evolution, endocrine disruption, health, and disease. Endocrinology 147: S4-10.
3. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, et al. (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 102: 10604-10609.
4. Kaminsky ZA, Tang T, Wang SC, Ptak C, Oh GH, et al. (2009) DNA methylation profiles in monozygotic and dizygotic twins. Nat Genet 41: 240-245.
5. Javierre BM, Fernandez AF, Richter J, Al-Shahrour F, Martin-Subero JI, et al. (2010) Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res 20: 170-179.
6. Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28: 1057-1068.
7. Chen QW, Zhu XY, Li YY, Meng ZQ (2014) Epigenetic regulation and cancer (review). Oncol Rep 31: 523-532.
8. Bhasin M, Reinherz EL, Reche PA (2006) Recognition and classification of histones using support vector machine. J Comput Biol 13: 102-112.
9. Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184: 868-871.
10. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389: 251-260.
11. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403: 41-45.
12. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21: 381-395.
13. Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and Methylation of Histones and Their Possible Role in the Regulation of Rna Synthesis. Proc Natl Acad Sci U S A 51: 786-794.
14. Zhang Y, Reinberg D (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15: 2343-2360.
15. Zhang X, Wen H, Shi X (2012) Lysine methylation: beyond histones. Acta Biochim Biophys Sin (Shanghai) 44: 14-27.
16. Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, et al. (2009) Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459: 108-112.
17. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, et al. (2007) High-resolution profiling of histone methylations in the human genome. Cell 129: 823-837.
18. Bedford MT, Clarke SG (2009) Protein arginine methylation in mammals: who, what, and why. Mol Cell 33: 1-13.
19. Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, et al. (2002) Active genes are tri-methylated at K4 of histone H3. Nature 419: 407-411.
20. Liang G, Lin JC, Wei V, Yoo C, Cheng JC, et al. (2004) Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. Proc Natl Acad Sci U S A 101: 7357-7362.
21. Ahmad K, Henikoff S (2002) The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell 9: 1191-1200.
22. Allis CD, Bowen JK, Abraham GN, Glover CV, Gorovsky MA (1980) Proteolytic processing of histone H3 in chromatin: a physiologically regulated event in Tetrahymena micronuclei. Cell 20: 55-64.
23. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, et al. (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119: 941-953.
24. Upadhyay AK, Horton JR, Zhang X, Cheng X (2011) Coordinated methyl-lysine erasure: structural and functional linkage of a Jumonji demethylase domain and a reader domain. Curr Opin Struct Biol 21: 750-760.
25. Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, et al. (2006) Histone demethylation by a family of JmjC domain-containing proteins. Nature 439: 811-816.
26. Lohse B, Kristensen JL, Kristensen LH, Agger K, Helin K, et al. (2011) Inhibitors of histone demethylases. Bioorg Med Chem 19: 3625-3636.
27. Klose RJ, Yamane K, Bae Y, Zhang D, Erdjument-Bromage H, et al. (2006) The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature 442: 312-316.
28. Blair LP, Cao J, Zou MR, Sayegh J, Yan Q (2011) Epigenetic Regulation by Lysine Demethylase 5 (KDM5) Enzymes in Cancer. Cancers (Basel) 3: 1383-1404.
29. Hong S, Cho YW, Yu LR, Yu H, Veenstra TD, et al. (2007) Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc Natl Acad Sci U S A 104: 18439-18444.
30. Huang Y, Fang J, Bedford MT, Zhang Y, Xu RM (2006) Recognition of histone H3 lysine-4 methylation by the double tudor domain of JMJD2A. Science 312: 748-751.
31. Adams-Cioaba MA, Min J (2009) Structure and function of histone methylation binding proteins. Biochem Cell Biol 87: 93-105.
32. Bartova E, Stixova L, Galiova G, Harnicarova Horakova A, Legartova S, et al. (2011) Mutant genetic background affects the functional rearrangement and kinetic properties of JMJD2b histone demethylase. J Mol Biol 405: 679-695.
33. Fodor BD, Kubicek S, Yonezawa M, O'Sullivan RJ, Sengupta R, et al. (2006) Jmjd2b antagonizes H3K9 trimethylation at pericentric heterochromatin in mammalian cells. Genes Dev 20: 1557-1562.
34. Hillringhaus L, Yue WW, Rose NR, Ng SS, Gileadi C, et al. (2011) Structural and evolutionary basis for the dual substrate selectivity of human KDM4 histone demethylase family. J Biol Chem 286: 41616-41625.
35. Berry WL, Janknecht R (2013) KDM4/JMJD2 histone demethylases: epigenetic regulators in cancer cells. Cancer Res 73: 2936-2942.
36. Gray SG, Iglesias AH, Lizcano F, Villanueva R, Camelo S, et al. (2005) Functional characterization of JMJD2A, a histone deacetylase- and retinoblastoma-binding protein. J Biol Chem 280: 28507-28518.
37. Zhang D, Yoon HG, Wong J (2005) JMJD2A is a novel N-CoR-interacting protein and is involved in repression of the human transcription factor achaete scute-like homologue 2 (ASCL2/Hash2). Mol Cell Biol 25: 6404-6414.
38. Berry WL, Shin S, Lightfoot SA, Janknecht R (2012) Oncogenic features of the JMJD2A histone demethylase in breast cancer. Int J Oncol 41: 1701-1706.
39. Li BX, Luo CL, Li H, Yang P, Zhang MC, et al. (2012) Effects of siRNA-mediated knockdown of jumonji domain containing 2A on proliferation, migration and invasion of the human breast cancer cell line MCF-7. Exp Ther Med 4: 755-761.
40. Li BX, Zhang MC, Luo CL, Yang P, Li H, et al. (2011) Effects of RNA interference-mediated gene silencing of JMJD2A on human breast cancer cell line MDA-MB-231 in vitro. J Exp Clin Cancer Res 30: 90.
41. Kim TD, Shin S, Berry WL, Oh S, Janknecht R (2012) The JMJD2A demethylase regulates apoptosis and proliferation in colon cancer cells. J Cell Biochem 113: 1368-1376.
42. Fu L, Chen L, Yang J, Ye T, Chen Y, et al. (2012) HIF-1alpha-induced histone demethylase JMJD2B contributes to the malignant phenotype of colorectal cancer cells via an epigenetic mechanism. Carcinogenesis 33: 1664-1673.
43. Li W, Zhao L, Zang W, Liu Z, Chen L, et al. (2011) Histone demethylase JMJD2B is required for tumor cell proliferation and survival and is overexpressed in gastric cancer. Biochem Biophys Res Commun 416: 372-378.
44. Toyokawa G, Cho HS, Iwai Y, Yoshimatsu M, Takawa M, et al. (2011) The histone demethylase JMJD2B plays an essential role in human carcinogenesis through positive regulation of cyclin-dependent kinase 6. Cancer Prev Res (Phila) 4: 2051-2061.
45. Beyer S, Kristensen MM, Jensen KS, Johansen JV, Staller P (2008) The histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF. J Biol Chem 283: 36542-36552.
46. Pollard PJ, Loenarz C, Mole DR, McDonough MA, Gleadle JM, et al. (2008) Regulation of Jumonji-domain-containing histone demethylases by hypoxia-inducible factor (HIF)-1alpha. Biochem J 416: 387-394.
47. Luo W, Chang R, Zhong J, Pandey A, Semenza GL (2012) Histone demethylase JMJD2C is a coactivator for hypoxia-inducible factor 1 that is required for breast cancer progression. Proc Natl Acad Sci U S A 109: E3367-3376.
48. Coffey K, Rogerson L, Ryan-Munden C, Alkharaif D, Stockley J, et al. (2013) The lysine demethylase, KDM4B, is a key molecule in androgen receptor signalling and turnover. Nucleic Acids Res 41: 4433-4446.
49. Chu CH, Wang LY, Hsu KC, Chen CC, Cheng HH, et al. (2014) KDM4B as a target for prostate cancer: structural analysis and selective inhibition by a novel inhibitor. J Med Chem 57: 5975-5985.
50. Cloos PA, Christensen J, Agger K, Maiolica A, Rappsilber J, et al. (2006) The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature 442: 307-311.
51. Duan L, Rai G, Roggero C, Zhang QJ, Wei Q, et al. (2015) KDM4/JMJD2 Histone Demethylase Inhibitors Block Prostate Tumor Growth by Suppressing the Expression of AR and BMYB-Regulated Genes. Chem Biol 22: 1185-1196.
52. Chen YK, Bonaldi T, Cuomo A, Del Rosario JR, Hosfield DJ, et al. (2017) Design of KDM4 Inhibitors with Antiproliferative Effects in Cancer Models. ACS Med Chem Lett 8: 869-874.
53. Cascella B, Lee SG, Singh S, Jez JM, Mirica LM (2017) The small molecule JIB-04 disrupts O2 binding in the Fe-dependent histone demethylase KDM4A/JMJD2A. Chem Commun (Camb) 53: 2174-2177.
54. Rose NR, Ng SS, Mecinovic J, Lienard BM, Bello SH, et al. (2008) Inhibitor scaffolds for 2-oxoglutarate-dependent histone lysine demethylases. J Med Chem 51: 7053-7056.
55. Hopkinson RJ, Tumber A, Yapp C, Chowdhury R, Aik W, et al. (2013) 5-Carboxy-8-hydroxyquinoline is a Broad Spectrum 2-Oxoglutarate Oxygenase Inhibitor which Causes Iron Translocation. Chem Sci 4: 3110-3117.
56. Chang KH, King ONF, Tumber A, Woon ECY, Heightman TD, et al. (2011) Inhibition of histone demethylases by 4-carboxy-2,2'-bipyridyl compounds. ChemMedChem 6: 759-764.
57. Korczynska M, Le DD, Younger N, Gregori-Puigjane E, Tumber A, et al. (2016) Docking and Linking of Fragments To Discover Jumonji Histone Demethylase Inhibitors. J Med Chem 59: 1580-1598.
58. Bavetsias V, Lanigan RM, Ruda GF, Atrash B, McLaughlin MG, et al. (2016) 8-Substituted Pyrido[3,4-d]pyrimidin-4(3H)-one Derivatives As Potent, Cell Permeable, KDM4 (JMJD2) and KDM5 (JARID1) Histone Lysine Demethylase Inhibitors. J Med Chem 59: 1388-1409.
59. Murray CW, Rees DC (2009) The rise of fragment-based drug discovery. Nat Chem 1: 187-192.
60. Krishnan S, Collazo E, Ortiz-Tello PA, Trievel RC (2012) Purification and assay protocols for obtaining highly active Jumonji C demethylases. Anal Biochem 420: 48-53.
61. Ng SS, Kavanagh KL, McDonough MA, Butler D, Pilka ES, et al. (2007) Crystal structures of histone demethylase JMJD2A reveal basis for substrate specificity. Nature 448: 87-91.
62. Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276: 307-326.
63. Collaborative Computational Project N (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50: 760-763.
64. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53: 240-255.
65. Lebedev AA, Vagin AA, Murshudov GN (2008) Model preparation in MOLREP and examples of model improvement using X-ray data. Acta Crystallogr D Biol Crystallogr 64: 33-39.
66. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60: 2126-2132.
67. Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, et al. (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 67: 355-367.