研究生: |
李宗韋 Lee, Chung-Wei |
---|---|
論文名稱: |
社群網路中行為意圖最大化的種子挑選演算法 Algorithms of Seed Selection for Maximizing Behavioral Intentions in Social Networks |
指導教授: |
蔡明哲
Tsai, Ming-Jer |
口試委員: |
許健平
Sheu, Jang-Ping 楊舜仁 Yang, Shun-Ren 高榮駿 Kao, Jung-Chun 郭桐惟 Kuo, Tung-Wei 郭建志 Kuo, Jian-Jhih |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 101 |
中文關鍵詞: | 社群網路 、行為意圖 、有限預算種子挑選問題 、近似演算法 |
外文關鍵詞: | Social networks, Behavioral intention, Budgeted Seed Selection problem, Approximation algorithm |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對想要拓展客戶群的小型公司而言,經由社群網路,去行銷公司的新產品是方便、
低成本及有效益的。在過去文獻裡,有許多文章探討「影響最大化問題」,此問題
主要是研究挑選一些消費者當作種子去散佈產品的資訊,使得接收此資訊的消費者
數為最多。然而至今,探討「影響最大化問題」的文獻,並未去考量其它消費者的
看法。這些看法會去改變原本消費者的行為意圖。在這篇論文裡,我們考量此因
素,提出了一個新的「影響最大化問題」,名為「有限預算種子挑選問題」。此問
題主要是研究在社群網路中,有限的預算下,挑選一些消費者當作種子去散佈自家
新產品的資訊,期望對此產品其行為意圖高的消費者能夠最多。然而,對「有限預
算種子挑選問題」,我們提出了一個近似演算法。此外,我們延伸此問題,名為
「多個產品及謠言散佈者的有限預算種子挑選問題」,在社群網路中,我們同時考
量多個產品及謠言散佈者。對此「多個產品及謠言散佈者的有限預算種子挑選問
題」,我們也提出了一個近似演算法。另外,我們也去探討「有限預算種子挑選問
題」的變形。最後,對於「有限預算種子挑選問題」及「多個產品及謠言散佈者的
有限預算種子挑選問題」,我們利用真實的紀錄資料去實驗,評估我們所提出的方
法其效能。實驗結果顯示,對於「有限預算種子挑選問題」來說,我們所提出的方
法,除可以得到一個近似最佳解外,其效能也勝過許多貪婪方法。另對於「多個產
品及謠言散佈者的有限預算種子挑選問題」來說,我們所提出的方法,其效能同樣
地也勝過需多貪婪方法。
Marketing through social networks is convenient, low-cost, and beneficial for small companies seeking to expand their customer numbers. In the literature, many studies address the influence maximization problem, which selects initial consumers (seeds) to spread the product information such that the number of consumers receiving the product information (the influenced consumers) is maximized. However, to date, none of these schemes take the beliefs of other persons that could significantly change the consumer's behavioral intention into account. In this thesis, we fill this gap by proposing a new variant of the influence maximization problem, the
Budgeted Seed Selection (BSS) problem, which asks for a set of seeds with the total cost not greater than a given budget in a social network such that the total expected behavioral intentions of the consumers influenced by the selected seeds are maximized. Furthermore, we propose an approximation algorithm for the BSS problem. In addition, we extend the BSS problem, the Budgeted Seed Selection with Multiple Products and Rumors (BSS-MPR) problem, which takes multiple products and rumors into account at the same time in a social network. We also propose an approximation algorithm for the BSS-MPR problem. Moreover, we study the variant of the BSS problem, the BSS problem with regardless of seed and the BSS problem with purchase desire, respectively.Finally, we conduct simulations to evaluate the performance of our algorithm using real traces and synthesis data. Experimental results show that our algorithm evaluates an approximately optimal seed set for the BSS problem and outperforms several greedy algorithms for the BSS problem and the BSS-MPR problem, respectively.
[1] H. Zhang, H. Zhang, A. Kuhnle, and M. T. Thai, \Prot maximization for multiple products in online social networks," in IEEE INFOCOM, 2016.
[2] C. J. Lin, C. W. Chen, and C. F. Chou, \Preference-aware content dissemination in opportunistic mobile social networks," in IEEE INFOCOM, 2012.
[3] K. Thilakarathna, A. C. Viana, and A. Seneviratne, \Mobile social networking through friend-to-friend opportunistic content dissemination," in ACM MobiHoc, 2013.
[4] P. Domingos and M. Richardson, \Mining the network value of customers," in ACM SIGKDD, 2001.
[5] M. Richardson and P. Domingos, \Mining knowledge-sharing sites for viral marketing," in ACM SIGKDD, 2002.
[6] D. Kempe, J. Kleinberg, and E. Tardos, \Maximizing the spread of influence through a social network," in ACM SIGKDD, 2003.
[7] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. S. Glance, \Cost-effective outbreak detection in networks," in ACM SIGKDD, 2007.
[8] W. Chen, Y. Wang, and S. Yang, \Efficient influence maximization in social networks," in ACM SIGKDD, 2009.
[9] Z. Lu, Y. Wen, and G. Cao, \Information diusion in mobile social networks: The speed perspective," in IEEE INFOCOM, 2014.
[10] G. Song, X. Zhou, Y. Wang, and K. Xie, \Influence maximization on large-scale mobile social network: A divide-and-conquer method," in IEEE TPDS, 2014.
[11] C. Borgs, M. Brautbar, J. Chayes, and B. Lucier, \Maximizing social influence in nearly optimal time," in ACM SODA, 2014.
[12] S. Tang, J. Yuan, X. Mao, X. Y. Li, W. Chen, and G. Dai, \Relationship classication in large scale online social networks and its impact on information propagation," in IEEE INFOCOM, 2011.
[13] H. Kim and E. Yoneki, \Influential neighbours selection for information diffusion in online social networks," in IEEE ICCCN, 2012.
[14] D. T. Nguyen, S. Das, and M. T. Thai, \Influence maximization in multiple online social networks," in IEEE GLOBECOM, 2013.
[15] S. Liu, L. Ying, and S. Shakkottai, \Influence maximization in social networks: An ising-model-based approach," in IEEE Allerton Conference, 2010.
[16] H. Zhang, T. N. Dinh, and M. T. Thai, \Maximizing the spread of positive influence in online social networks," in IEEE ICDCS, 2013.
[17] Y. Zhang, J. Zhou, and J. Cheng, \Preference-based top-k influential nodes mining in social networks," in IEEE TRUSTCOM, 2011.
[18] G. Tong, W. Wu, L. Guo, D. Li, C. Liu, B. Liu, and D.-Z. Du, \An efficient randomized algorithm for rumor blocking in online social networks," in IEEE INFOCOM, 2017.
[19] C. Budak, D. Agrawal, and A. E. Abbadi, \Limiting the spread of misinformation in social networks," in ACM WWW, 2011.
[20] X. He, G. Song, W. Chen, and Q. Jiang, \Influence blocking maximization in social networks under the competitive linear threshold model," in SIAM SDM, 2012.
[21] Y. Ping, Z. Cao, and H. Zhu, \Sybil-aware least cost rumor blocking in social networks," in IEEE GLOBECOM, 2014.
[22] O. T. Ahtola, \The vector model of preferences: An alternative to the fishbein model," in Journal of Marketing Research, 1975.
[23] M. Fishbein and I. Ajzen, \\misconceptions about the fishbein model: Reflections on a study by songer-nocks," in ELSEVIER JESP, 1976.
[24] L. G. Schiffman and L. L. Kanuk, Consumer Behavior. Prentice HalL, 2003.
[25] S. Martin E. P. and C. Mihaly, Positive Psychology: An Introduction. American Psychologist, 2000.
[26] S. Khuller, A. Moss, and J. Naor, \The budgeted maximum coverage problem," in ACM IPL, 1999.
[27] A. Krause and C. Guestrin, \A note on the budgeted maximization of submodular functions," in Technical Report. CMU-CALD-05-103, 2005.
[28] D. Yang, X. Fang, and G. Xue, \ESPN: Efficient server placement in probabilistic networks with budget constraint," in IEEE INFOCOM, 2011.
[29] J. S. He, S. Ji, R. Beyah, and Z. Cai, \Minimum-sized influential node set selection for social networks under the independent cascade model," in ACM MobiHoc, 2014.
[30] H. Nguyen and R. Zhang, \On budgeted influence maximization in social networks," in IEEE J-SAC, 2013.
[31] W. Gao and G. Cao, \User-centric data dissemination in disruption tolerant networks," in IEEE INFOCOM, 2011.
[32] W. Gao, G. Cao, T. L. Porta, and J. Han, \On exploiting transient social contact patterns for data forwarding in delay-tolerant networks," in IEEE TMC, 2013.
[33] \Crawdad," [Online]. http://crawdad.cs.dartmouth.edu.
[34] \Last.fm," [Online]. http://www.last.fm.
[35] G. Nemhauser, L. Wolsey, and M. Fisher, Mathematical Programming. Springer Verlag, 1978.
[36] C. M. Grinstead and J. L. Snell, Introduction to Probability. American Mathematical Society, 1997.
[37] A.-K. Pietilainen and C. Diot, \Dissemination in opportunistic social networks: The role of temporal communities," in ACM MobiHoc, 2012.
[38] J. Dawes, \Do data characteristics change according to the number of scale points used ? an experiment using 5 point, 7 point and 10 point scales," in MRS IJMR, 2008.
[39] M. Faloutsos, P. Faloutsos, and C. Faloutsos, \On power-law relationships of the internet topology," in ACM SIGCOMM, 1999.