研究生: |
陳宜群 Chen, Yi-Chun |
---|---|
論文名稱: |
鋰離子二次電池橄欖石結構正極材料之相變化與電化學分析研究 Phase Transition and Electrochemical Studies of Olivine-type Cathode Materials for Lithium Ion Batteries |
指導教授: |
施漢章
Shih, Han C. 葉均蔚 Yeh, Jien-Wei |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 110 |
中文關鍵詞: | 磷酸鋰鐵 、同步輻射光源 、鋰離子二次電池 、相轉變 |
外文關鍵詞: | LiFePO4, Synchrotron X-ray, Lithium ion batteries, phase transformation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
LiFePO4 was the most attractive cathode material for the lithium ion batteries due to its low cost, high capacity and high safety. However LiFePO4 had two major drawbacks: first was the lower conductivity (10-9 Scm-1) and second was the lower working voltage compared with other cathode materials. In this study, other transition metals (Co and Mn) were substituted at 4c site of the olivine structure to raise the average working voltage because of the Co2+/Co3+ and Mn2+/Mn3+ redox couples with higher chemical potentials than that of the Fe2+/Fe3+ redox couples. Olivine-type cathode materials with carbon coatings (LiMPO4/C) were formed to enhance the electrical conductivity and electrochemical performances. Electrochemical impedance spectrum and cyclic voltammetry were used to study the fundamental electrochemistry of cathode materials. Furthermore in-situ synchrotron X-ray diffraction and absorption were used to analyze the structure transformation and valence change during the cycling.
We had substituted Mn2+ at the 4c site of LiFePO4 to prepare the lithium bi-metal phosphate LiMnxFe1-xPO4. At 0.05C charge/discharge, X-ray patterns revealed that LiMn0.25Fe0.75PO4 undergoes two two-phase transformations during the delithiation, resulting from Fe2+/Fe3+ and then Mn2+/Mn3+ redox reactions. However, the phase transformation for lithiation is different, becoming a two-phase (Mn2+/Mn3+) reaction and single-phase (Fe2+/Fe3+) reaction. Even at a higher charge/discharge rate (0.5C), the results were the same. LiMn0.25Fe0.75PO4 also had a good cyclability, since there is no significant capacity fading during the cycling test. The X-ray patterns showed that LiMn0.25Fe0.75PO4 still maintains a good crystal structure after 40 cycles because of its stable olivine structure. By in-situ metal K-edge absorption analysis, it revealed that a raised voltage was contributed by the Mn2+/Mn3+ redox couples, however, the substituted metal Mn2+ did not work completely at a higher discharge rate, due to poor electrical conductivity and a serious Jahn-Teller effect.
For LiMn0.5Fe0.5PO4, at room temperature, its capacity was about 138 mAhg-1 and the average voltage had increased from the value for pure lithium iron phosphate to 3.7V due to the Mn substitution. As the temperature was raised to 55oC, the LiMn0.5Fe0.5PO4/C showed an excellent electrochemical performance. Its capacity increased to 160 mAhg-1 and the average voltage also increased to 3.75 V. Even the discharge rate increased to 1 C, and the capacity could still be maintained at about the same value of 160 mAhg-1. The electrochemical impedance and cyclic voltammetry showed that elevated temperature could enhance the activity of the Fe2+/Fe3+ and Mn2+/Mn3+ redox couples and reduce their electrochemical resistance. Those were why LiMn0.5Fe0.5PO4/C showed such good performance at 55 oC. However, Mn dissolution was also observed in the olivine-type LiMn0.5Fe0.5PO4 at elevated temperatures.
Furthermore, lithium multi-transition metal phosphate LiCo1/3Mn1/3Fe1/3PO4 was synthesized and studied, which had a high voltage of 3.72 V and a capacity of 140 mAhg-1 at a 0.05C rate due to the Mn2+ and Co2+ substitution. From the in-situ XRD analysis, LiCo1/3Mn1/3Fe1/3PO4 show a high stability during cell charge/discharge, even operating at 5 V, which was due to the stable olivine structure. Although all the transition metals Co2+, Mn2+ and Fe2+ were at the same 4c site of the LiCo1/3Mn1/3Fe1/3PO4 structure, they seemed to have different chemical activities and reflected on the electrochemical performance. The capacity contributed by the Co2+/Co3+ redox couple was only 20 mAhg-1, which was less than that of the Fe2+/Fe3+ and Mn2+/Mn3+ redox couples. This was because the diffusivity of lithium ion for the Co2+/Co3+ redox couple was 10-16 cm2s-1 which was one order less than that of the Fe2+/Fe3+ and Mn2+/Mn3+ redox couples in LiCo1/3Mn1/3Fe1/3PO4.
1. T. Nagaura, K. Tozawa, “Lithium-ion rechargeable battery”Prog. Batteries Sol. Cells, 9 (1990) 209.
2. Y. Nishi, “Lithium ion secondary batteries; 10 years and the future”J. Power Sources, 100 (2001) 101.
3. S.S. Zhang (Eds), Advanced Materials and Methods for Lithium-ion Batteries 2007, first ed., Transworld Research Network, India, 2007, pp. 1-20.
4. J. Hajek; French Patent,: 8 (1949) 101949.
5. J. Yamaki, S. Tobishima, K. Hayashi, K. Saito, Y. Nemoto, M. Arakawa, “A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte” J. Power Sources, 74 (1998) 219.
6. M.B. Armand, Material for Advanced Matteries (Proc. NATO Symp. Materials Adv. Batteries) (eds Murphy, D.W., Broadhead, J. & Steele, B.C.H.) 145 (Plenum, New York, 1980).
7. D.W. Murphy, F.J. DiSalvo, J.N. Carides, J.V. Waszczak, “Topochemical reactions of rutile related structures with lithium.” Mat. Res. Bull. 13 (1978) 1395.
8. M. Lazzari, B. Scrosati,” Acyclable lithium organic electrolyte cell based on two intercalation electrodes.” J. Electrochem. Soc., 127 (1980) 773.
9. M. Mohri, N. Yanagisawa, Y. Tajima, H. Tanaka, T. Mitate, S. Nakajima, M. Toshida, Y. Yoshimoto, T. Suzuki, H. Wada,”Rechargeable lithium battery based on pyrolytic carbon as a negative electrode.” J. Power Sources 26 (1989) 545.
10. T. Nagaura, Prog. Batt. Solar Cells, 10 (1991) 209.
11. K. Ozawa, “Lithium-ion rechargeable with LiCoO2 and carbon electrodes: the LiCoO2/C system”Solid State Ionics, 69 (1994) 212.
12. 吳宇平、戴曉兵、馬軍旗、程預江“鋰離子電池-應用與實踐”化學工業出版社,北京,2004.
13. W.D. Johnston, R.R. Heikes, D.D. Sestrich, “The preparation, crystallography, and magnetic properties of the LixCo(1-x)O system” J. Phys. Chem. Solids, 7 (1958) 1.
14. K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough,“LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density” Mat. Res. Bull. 15 (1980) 783.
15. M.K. Aydinol, A.F. Kohan, G. Ceder, K.Cho, J. Joannopoulos, “Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides”Phys. Rev. B 56 (1997) 1354.
16. C. Delmas, J.P. Peres, A. Rougier, A. Demourgues, F. Weill, A. Chadwick, M. Broussely, F. Perton, Ph. Biensan, P. Willmann, “On the behavior of the LixNiO2 system: an electrochemical and structure overview” J. Power Sources 68 (1997) 120.
17. J.N. Reimers, J.R. Dahn,“Electrochemical and In Situ X-Ray Diffraction Studies of Lithium Intercalation in LixCoO2”“J. Electrochem. Soc., 139 (1992) 2091.
18. T. Ohzuku, A. Ueda,“Solid-State Redox Reactions of LiCoO2 (R m) for 4 Volt Secondary Lithium Cells”“J. Electrochem. Soc., 141 (1994) 2972.
19. J. Cho, G. Kim,“Enhancement of Thermal Stability of LiCoO2 by LiMn2O4 Coating” Electrochem. Solid State Lett., 2 (1999) 253.
20. J. Cho, Y.J. Kim, B. Park,“Novel LiCoO2 Cathode Material with Al2O3 Coating for a Li Ion Cell”Chem. Mater., 12 (2000) 3788.
21. Y. Kim, H.S. Kim, S.W. Martin, “Synthesis and electrochemical characteristics of Al2O3-coated Li1/3Co1/3Mn1/3O2 cathode materials for lithium ion batteries” Electrochimica Acta, 52 (2006) 1316.
22. S.M. Lee, S.H. Oh, J.P. Ahn, W. Il Cho, H. Jang, “Electrochemical properties of ZrO2-coated LiNi0.8Co0.2O2 cathode materials” J. Power Sources, 159 (2006) 1334.
23. M. Mladenov, R. Stoyanova, E. Zhecheva, S. Vassilev,“Effect of Mg doping and MgO –surface modification on the cycling stability of LiCoO2 electrodes” Electrochem. Commun. 3 (2001) 410.
24. G.G. Amatucci, A.Blyr, C. Sigala, P. Alfonse, J.M. Tarascon, “Surface treatments of Li1+xMn2-xO4 spinels for improved elevated temperature performance”Solid State Ionics, 104 (1997) 13.
25. Y.J. Kim, T.J. Kim, J.W. Shin, B. Park, J. Cho,“The Effect of Al2O3 Coating on the Cycle Life Performance in Thin-Film LiCoO2 Cathodes” J. Electrochem. Soc., 149 (2002) A1337.
26. L. Liu, L. Chen, X. Huang, X.Q. Yang, W.S. Yoon, H.S. Lee, J. McBreen,“Electrochemical and In Situ Synchrotron XRD Studies on Al2O3-Coated LiCoO2 Cathode Material” J. Electrochem. Soc., 151 (2004) A1344.
27. K.Y. Chung, W.S. Yoon J. McBreen, X.Q. Yang, S.H. Oh, H.C. Shin, W.I. Cho, B.W. Cho, “Structural Studies on the Effects of ZrO2 Coating on LiCoO2 during Cycling Using In Situ X-Ray Diffraction Technique”J. Electrochem. Soc., 153 (2006) A2152.
28. C. Delmas, M. Menetrier, L. Croguennec, I. Saadoune, A. Rougier, C. Pouillerie, G. Prado, M. Grune, L. Fournes,“An overview of the Li(Ni,M)O2 systems: syntheses, structures and properties” Electrochimica Acta, 45 (1999) 243.
29. J. Morales, C. Perez-Vicente, J.L. Tirado,“Cation distribution and chemical deintercalation of Li1-xNi1+xO2”Mater. Res. Bull., 25 (1990) 623.
30. T. Ohzuku, A. Ueda, M. Kouguchi, “Synthesis and Characterization of LiAl1/4Ni3/4O2 (R m) for Lithium-Ion (Shuttlecock) Batteries”J. Electrochem. Soc., 142 (1995) 4033.
31. W. Li, J.C. Currie, J. Wolstenholme,“Influence of morphology on the stability of LiNiO2”J. Power Souces, 68 (1997) 565.
32. D.G. Wickham, W.J. Croft, “Crystallographic and magnetic properties of several spinels containing trivalent ja-1044 manganese” J. Phys. Chem. Solids, 7 (1958 ) 351.
33. J.C. Hunter, “Preparation of A New crystal Form of Manganese-Dioxide – Lambda-MnO2” J. Solid State Chem., 39 (1981) 142.
34. M.M. Thackeray, W.I.F. David, P.G. Bruce, J.B. Goodenough, “Lithium Insertion into Manganese Spinels” Mat. Res. Bull., 18 (1983) 461.
35. M.M. Thackeray,“Manganese oxides for lithium batteries”Prog. Solid State Chem., 25 (1997) 1.
36. R.J. Gummow, A. DeKock, M.M. Thackeray, “Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells”Solid State Ionics, 69 (1994) 59.
37. A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, “Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries” J. Electrochem. Soc. 144 (1997) 1188.
38. A.K. Padhi, K.S. Nanjundaswamy, C. Masquelier, S. Okada, J.B. Goodenough, “Effect of Structure on the Fe3+/Fe2+ Redox Couple in Iron Phosphates” J. Electrochem. Soc. 144 (1997) 1609
39. L. Laffont, C. Delacourt, P. Gibot, M. Y. Wu, P. Kooyman, C. Masquelier, J.M. Tarascon, “Study of the LiFePO4/FePO4 Two-Phase System by High-Resolution Electron Energy Loss Spectroscopy” Chem. Mater. 18 (2006) 5520.
40. H. Huang, S.C. Yin, L.F. Nazar,“Approaching Theoretical Capacity of LiFePO4 at Room Temperature at High Rates” Electrochem. Solid State Lett. 4 (2001) A170.
41. S.S. Zhang, J.L. Allen, K. Xu, T.R. Jow, “Optimization of reaction condition for solid-state synthesis of LiFePO4-C composite cathodes”J. Power Sources 147 (2005) 234.
42. S. Franger, C. Bourbon, F.L. Cras, “Optimized Lithium Iron Phosphate for High-Rate Electrochemical Applications”J. Electrochem. Soc. 151 (2004) A1024.
43. R. Dominko, J.M. Goupil, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, J.Jamnik, “Impact of LiFePO4/C Composites Porosity on Their Electrochemical Performance”J. Electrochem. Soc., 152 (2005) A858.
44. S.Y. Chung, J.T. Bloking, Y.M. Chiang, “ Electronically conductive phosphor-olivines as lithium storage electrodes” Nature Mat. 1 (2002) 123.
45. Z. Chen, J.R. Dahn,“Reducing Carbon in LiFePO4/C Composite Electrodes to Maximize Specific Energy, Volumetric Energy, and Tap Density” J. Electrochem. Soc. 149 (2002) A1184.
46. T. Drezen, N.H. Kwon, P. Bowen, I. Teerlinck, M. Isono, I. Exnar,“Effect of particle size on LiMnPO4 cathodes”J. Power Sources, 174 (2007) 949.
47. M. Yonemura, A. Yamada, Y. Takei, N. Sonoyama and R. Kanno, “Comparative Kinetic Study of Olivine LixMPO4 (M = Fe, Mn)”J. Electrochem. Soc., 151 (2004) A1352.
48. N.N. Bramnik, K.G. Bramnik, C. Baehtz, H. Ehrenberg, “Study of the effect of different synthesis routes on Li extraction–insertion from LiCoPO4”J. Power Sources, 145 (2005) 74.
49. F. Zhou, M. Cococcioni, K. Kang, G. Ceder,“The Li intercalation potential of LiMPO4 and LiMSiO4 olivines with M = Fe, Mn, Co, Ni”Electrochem. Commun., 6 (2004) 1144.
50. J. Wolfenstine, J. Allen, “Ni3+/Ni2+ redox potential in LiNiPO4”J. Power Sources, 142 (2005) 389.
51. G. Li, H. Azuma, M. Tohda, “LiMnPO4 as the Cathode for Lithium Batteries”Electrochem. Solid State Lett. 5 (2002) A135.
52. A. Yamada, S.C. Chung,“Crystal Chemistry of the Olivine-Type Li(MnyFe1-y)PO4 and (MnyFe1-y)PO4 as Possible 4 V Cathode Materials forLithium Batteries”J. Electrochem. Soc. 148 (2001) A960.
53. A. Yamada, Y. Kudo, K.Y. Liu, “Reaction Mechanism of the Olivine-Type Lix(Mn0.6Fe0.4)PO4 (0 ≤ x ≤1)”J. Elechrochem. Soc. 148 (2001) A747.
54. A. Yamada, Y. Kudo, K.Y. Liu, “Phase Diagram of Lix(MnyFe1-y)PO4 (0 ≤ x ≤1)”J. Electrochem. Soc. 148 (2001) A1153.
55. A. Yamada, Y. Takei, H. Koizumi, N. Sonoyama, R. Kanno, “Electrochemical, Magnetic, and Structural Investigation of the Lix(MnyFe1-y)PO4 Olivine Phases”Chem. Mater. 18 (2006) 804.
56. J. Molenda, W. Ojczyk, K. Swierczek, W. Zajac, F. Krok, J. Dygas, R.S. Liu,“Diffusional mechanism of deintercalation in LiFe1 − yMnyPO4 cathode material” Solid State Ionics 177 (2006) 2617.
57. W. Ojczk, J. Marzec, J. Dygas, F. Krok, R.S. Liu, J. Molenda, “Structural and transport properties of LiFe0.45Mn0.55PO4 as a cathode material in Li-ion batteries”J. Materials Science-Poland 24 (2006) 103.
58. H.T. Kuo, T.S. Chan, N.C. Bagkar, G.Q. Liu, R.S. Liu, C.H. Shen, D.S. Shy, X.K. Xing, J.M. Chen,“Effect of Co2P on Electrochemical Performance of Li(Mn0.35Co¬0.2Fe0.45)PO4/C”J. Phys. Chem. B 112 (2008) 8017.
59. X.J. Wang, X.Q. Yu, H. Li, X.Q. Yang, J. McBreen, X.J. Huang,“Li-storage in LiFe1/4Mn1/4Co1/4Ni1/4PO4 solid solution”Electrochem. Commun. 10 (2008) 1347.
60. K.W. Nam, X.J. Wang, W.S. Yoon, H. Li, X.J. Huang, O. Haas, J.M. Bai, X.Q. Yang,“In situ X-ray absorption and diffraction studies of carbon coated LiFe1/4Mn1/4Co1/4Ni1/4PO4 cathode during first charge”Electrochem. Commun. 11 (2009) 913.
61. Y. Zhang, C.S. Sun, Z. Zhou,“Sol-gel preparation and electrochemical performances of LiFe1/3Mn1/3Co1/3PO4/C composites with core-shell nanostructure”Electrochem. Commun. 11 (2009) 1183.
62. M. Kakihana, “Invited review “sol-gel” preparation of high temperature superconducting oxides” J. Sol-Gel Sci. Techn. 6 (1996) 7.
63. T. Ohzuku, S. Kitano, M. Iwanaga, H. Mastsuno, A. Ueda,“Comparative study of Li[LiMn2-x]O4 and LT-LiMnO2 for lithium-ion batteries”J. Power Souces 68 (1997) 646.
64. P. Barboux, J.M. Tarascon, F.K. Shokoohi, “The use of acetates as precursor for the low-temperature synthesis of LiMnO2 and LiCoO2 intercalation”J. Solid State Chem. 94 (1991) 185.
65. A.C. Pierre,“Introduction to Sol-Gel Processing” Kluwer Acadmic Publishers, Boston (1998).
66. H. Zhao, L. Gao, W. Qiu, X. Zhang,“Improvement of electrochemical stability of LiCoO2 cathode by a nano-crystalline coating” J. Power Souces 132 (2004) 195.
67. X.Q. Yang, J. McBreen, W.S. Yoon, C.P. Grey,“Crystal structure changes of LiMn0.5Ni0.5O2 cathode materials during charge and discharge studied by synchrotron based in situ XRD” Electrochem. Commun. 4 (2002) 649.
68. K.Y. Chung, W.S. Yoon, H.S. Lee, J. McBreen, X.Q. Yang, S.H. Oh, W.H. Ryu, J.L. Lee, W. I. Cho, B.W. Cho, “In situ XRD studies of the structural changes of ZrO2-coated LiCoO2 during cycling and their effects on capacity retention in lithium batteries”J. Power Sources 163 (2006) 185.
69. P.Y. Liao, J.D. Duh, J.F. Lee, H.S. Sheu, “Structural investigation of Li1−xNi0.5Co0.25Mn0.25O2 by in situ XAS and XRD measurements”Electrochim. Acta 53 (2007) 1850.
70. H.H. Chang, C.C. Chang, H.C. Wu, M.H. Yang, H.S. Sheu, N.L. Wu,“Study on dynamics of structural transformation during charge/discharge of LiFePO4 cathode”Electrochem. Commun. 10 (2008) 335.
71. H.C. Shin, K.Y. Chung, W.S. Min, D.J. Byun, H. Jang, B.W. Cho,“Asymmetry between charge and discharge during high rate cycling in LiFePO4-In Situ X-ray diffraction study”Electrochem. Commun. 10 (2008) 536.
72. Y. Chiang, Y. Kao, N. Meethong, M. Tang,“Phase Behavior of Nanoscale Intercalation Compounds and Impact on Electrochemical Properties”216th ECS Meeting Abstract 483.
73. K.W. Nam, W.S. Yoon, K. Zaghib, K.Y. Chung, X.Q. Yang,“The phase transition behaviors of Li1-xMn0.5Fe0.5PO4 during lithium extraction studied by in situ X-ray absorption and diffraction techniques”Electrochem. Commun. 11 (2009) 2023.
74. J. McBreen, W.E. O’Grady, K.I. Pandya,“EXAFS: a New Tool for the Study of Battery and Fuel Cell Materials”J. Power Sources 22 (1988) 323.
75. H. Kobayashi, Y. Arachi, S. Emura, H. Kageyama, K. Tatsumi, T. Kamiyama,“Investigation on lithium de-intercalation mechanism for Li1−yNi1/3Mn1/3Co1/3O2” J. Power Sources, 146 (2005) 640.
76. S. Mukerjee, X.Q. Yang, X. Sun, S.J. Lee, J. McBreen and Y.E. Eli, “In situ synchrotron X-ray studies on copper–nickel 5 V Mn oxide spinel cathodes for Li-ion batteries”Electrochim. Acta, 49 (2004) 3373.
77. W.S. Yoon, K.Y. Chung, K.W. Nam, J. McBreen, D. Wang, X.H. Huang, H. Li, L. Chen, X.Q. Yang, “Electronic structural changes of the electrochemically delithiated LiFe0.5Co0.5PO4 cathode material studied by X-ray absorption spectroscopy”J. Power Sources, 183 (2008) 427 .
78. H.S. Fang, Z.Y. Pan, L.P. Li, Y. Yang, Guofeng Yan, G.S. Li, Shiqiang Wei,“The possibility of manganese disorder in LiMnPO4 and its effect on the electrochemical activity” Electrochem. Commun., 10 (2008) 1071.
79. A.C. Larson, R.B. Von Dreele,“Generalized Structure Analysis System (GSAS)”Los Alamos National Lab Rep. LAUR 86 (1994) 748.
80. S.F. Yang, Y.N. Song, P.Y. Zavalij, M.S. Whittingham, “Reactivity, stability and electrochemical behavior of lithium iron phosphates”Electrochem. Commun. 4 (2002) 239.
81. K. Zaghib, K. Striebel, A. Guerfi, J. Shim, M. Armand, M. Gauthierf, “LiFePO4/polymer/natural graphite: low cost Li-ion batteries”Electrochim. Acta, 50 (2004) 263.
82. K. Zaghib, P. Charest, A. Guerfi, J. Shim, M, Perrier, K. Striebel, “LiFePO4 safe Li-ion polymer batteries for clean environment”J. Power Sources, 146 (2005) 380.
83. G.X. Wang, L. Yang, S.L. Bewlay, Y. Chen, H.K. Liu, J.H. Ahn,“Electrochemical properties of carbon coated LiFePO4 cathode materials” J. Power Sources, 146 (2005) 521.
84. J.M. Chen, C.H. Hsu, Y.R. Lin, M.H. Hsiao and G.T.K. Fey, “High-power LiFePO4 cathode materials with a continuous nano carbon network for lithium-ion batteries”J. Power Sources, 184 (2008) 498.
85. C.M. Burba, R. Frech,“Local structure in the Li-ion battery cathode material Lix(MnyFe1-y)PO4 for 0<x<1 and y= 0, 0.5 and1.0” J. Power Sources, 172 (2007) 870.
86. J.M. Osorio-Guillen, B. Holm, R. Ahuja, B. Johansson,“A theoretical study of olivine LiMPO4 cathodes”Solid State Ionics, 167 (2004) 221.
87. D. Wang, H. Li, S. Shi, X. Huang, L. Chen, “Improving the rate performance of LiFePO4 by Fe-site doping”Electrochim. Acta, 50 (2005) 2955.
88. C. Delacourt, L. Laffont, R. Bouchet, C. Wurm, J.B. Leriche, M. Morcrette, J.M. Tarascon, C. Masquelier,“Toward Understanding of Electrical Limitations (Electronic, Ionic) in LiMPO4 (M=Fe, Mn) Electrode Materials” J. Electrochem. Soc., 152 (2005) A913.
89. J. Chen, M.J. Vacchio, S. Wang, N. Chernova, P.Y. Zavalij, M.S. Whittingham,“The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications” Solid State Ionics 178 (2008) 1676.
90. G. Kobayashi, A. Yamada, S.I. Nishimura, R. Kanno, Y. Kobayashi, S. Seki, Y. Ohno, H. Miyashiro,“Shift of redox potential and kinetics in Lix(MnyFe1-y)PO4” J. Power Sources 189 (2009) 397.
91. A. Antonini, C. Bellitto, M. Pasquali, G. Pistoia, “Factors Affecting the Stabilization of Mn Spinel Capacity upon Staring and Cycling at High Temperatures”J. Electrochem. Soc., 145 (1998) 2726.
92. T. Doi, M. Inaba, H. Tsuchiya, S.K. Jeong, Y. Iriyama, T. Abe, Z. Ogumi,“Electrochemical AFM study of LiMn2O4 thin film electrodes exposed to elevated temperatures” J. Power Sources 180 (2008) 539.
93. Y.J. Liu, X.H. Li, H.J. Guo, Z.X. Wang, Q.Y.Hu, W.J. Peng, Y. Yang, “Electrochemical performance and capacity fading reason of LiMn2O4/graphite batteries stored at room temperature”J. Power Sources 189 (2009) 721.
94. J.W. Fergus,“Recent developments in cathode materials for lithium ion batteries” J. Power Sources 195 (2010) 939.
95. J. Wolfenstine, J. Allen, “LiNiPO4-LiCoPO4 solid solution as cathodes”J. Power Sources 136 (2004) 150.
96. G.Y. Chen, X.Y. Song, T.J. Richardson, “Electron Microscopy Study of the LiFePO4 to FePO4 Phase Transition”Electrochem. Solid-State Lett. 9 (2006) A295.
97. P.P. Prosini, M. Lisi, D. Zane, M. Pasquali,“Determination of the chemical diffusion coefficient of lithium in LiFePO4”Solid State Ionics 148 (2002) 45.
98. F. Gao, Z. Tang, “Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries”Electrochim. Acta 53 (2008) 5071.