研究生: |
蕭翔文 Siao, Siang-Wun |
---|---|
論文名稱: |
鎳/氧化鎳單晶奈米線的合成研究與電阻性記憶體之應用 Synthesis of Single Crystal Ni/NiO Core-Shell Nanowires and its Application at Resistive Switching Memory |
指導教授: |
周立人
Chou, Li-Jen 闕郁倫 Chueh, Yu-Lun 謝光前 Hsieh, Kuang-Chien |
口試委員: |
闕郁倫
Chueh, Yu-Lun 謝光前 Hsieh, Kuang-Chien 林麗瓊 Li, Chyong-Chen 陳貴賢 Chen, Kuei-Hsien |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 70 |
中文關鍵詞: | 鎳/氧化鎳 、電阻性記憶體 |
外文關鍵詞: | Ni/NiO Core-Shell Nanowires, RRAM |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於電阻式記憶體擁有低價格、低功耗、快速的讀寫速度與製程中晶片較不易受到損毀,引起了許多科學家廣泛的研究興趣。而為了要因應規格的縮小化,利用奈米線來取代薄膜已成為一種趨勢。在許多的研究報導中,都是先在基板上合成出純鎳奈米線,再將此氧化後得到核殼狀鎳/氧化鎳的奈米線,因此,屬於二階段製程。本研究中,我們成功地利用一階利段製程合成出核殼狀鎳/氧化鎳的奈米線,並針對其結構、電性與電阻轉換性質探討分析。
我們利用氯化鎳為先驅物,在溫度為800/700的兩區爐管中液流氬氣,透過OAG機制成功的在矽基材上中成長出Ni/NiO核殼狀奈米線,並且利用氫氟酸蒸氣將外層因OAG機制所生成的二氧化矽去除。我們利用不同的反應溫度與通入不同的氣體來控制外層二氧化矽的厚度。再者,利用SEM與TEM來分析奈米線的表面形貌、晶體結構與化學成分組成。接下來,透過三軸調整器與光學顯微鏡以及電子束微影技術來製作成奈米元件。
最後,我們利用Keithley 4200電流電壓量測儀器來測量Ni/NiO核殼狀奈米線的I-V曲線和電阻轉換的行為。同時,藉由不同的的電極距離來探討電阻轉換的可能傳導路徑。首先,我們利用不同的金屬做為電極,可以觀察到其擁有不同的電阻轉換特性。第二,我們將兩組作耐久度的測試,可以發現其操作次數都可高達100次並且呈現的是穩定的狀態下。最後,由於我們的操作電流可以低到micro 安培以下,因此在電阻式記憶體的應用上有著相當的潛力。
Because RRAM has many advantages such as low cost, low power, fast programming speed (twr < 100 ns), simple structure, shrinkage of cell size and nondestructive operation, it has attracted much attention for many researchers. Besides, in order to decrease the cell area and raise the density, nanowires were used to replace the thin film materials. In the literature, they usually synthesize the Ni nanowires and then oxidize the nanowires to form Ni/NiO core-shell structures. In our research, we report the growth and structural characterization of the core-shell Ni/NiO nanowires in one step. In addition, the electrical and resistance switching properties were also investigated.
The Ni/NiO core-shell nanowires were synthesized by NiCl2 sources on Si substrates at 800 ℃ in source region (I) and 700 ℃ in substrate region (II) under Ar carrier gas in two-region furnace via oxide-assisted growth (OAG) mechanism. Due to the OAG mechanism, the SiO2 layer was formed outside of Ni/NiO core-shell nanowires. Then, we used HF vapor to etch away the SiO2. By different reaction temperature and flow gas, we can control the diameters and length of the nanowires. The crystal structure, morphology and chemical composition were analyzed by scanning electron microscope (SEM) and transmission electron microscope (TEM). Besides, due to fabrication of nanodevice, we use the optical microscope (OM) and a series of standard electron beam lithography (EBL).
Finally, we used the Keithley 4200 to measure the I-V curve and resistive switching behaviors of core-shell Ni/NiO nanowires. Also, we designed different electrode distances of nanodevices to investigate the possible conduction path. First, different resistive switching modes such as unipolar or bipolar switching mode were observed in different electrodes, nickel and titanium. Secondly, the endurance of the Ni/NiO core-shell nanowires can be modified and the cycle number can be over 100. Finally, because the resistive switching current could be operated at micro amp (A) and lower power, the Ni/NiO core-shell nanowires have potential to become energy efficient random access memory (ReRAM).
[1.1] P.Alivisators,“Semiconductor Clusters Nanocrystals, and Quantum Dots”, Science ,271, (1999), pp.933-934
[1.2] J.M.Krans, J.M.van Rultenbeek, V.V.Fisun, I.K.Yanson, and L.J.de.Jongh,“The Signature of Conductance Quantization in Metallic Point Contacts”, Nature, 375, (1995), pp.767-769
[1.3] D.K.Sarkar, D.Brassard, and M.A.El Khakani,“Single-Electron Tunneling at Room Temperature in TixSi1-xO2 Nanocomposite Thin Films ”, Appl.Phys.Lett., 87, (2005), pp253108-253110
[1.4] G.Markovich, C.P.Cllier, S.E.Henrichs, F.Remacle, R.D.Levine, and J.R.Heath,“Architectonic Quantnm Dot Solids”, Acc.Chem.Res., 32, (1999), pp.415-423
[1.5] E.Leobandung, L.Guo, Y.Wang, and S.Y.Chou,“Quantum Effects and Coulomb Blockade in Silicon Quantum-Dot Transistors at Temperature over 1000K”, Appl.Phys.Lett., 67, (1995), pp938-940
[1.6] J.A.McCleverty and T.J.Meyer,“Comprehensive Coordination Chemistry Ⅱ:form Biology to Nanotechnology”, Elsevier Pergamon Boston, (2004)
[1.7] R.R.H.Coombs and D.W.Robinson,“Nanotechnology in Medicine and the Biosciences”, Gordon and Breach Publishers, (1996)
[1.8] Petr Lazar, Shuai Zhang, Klára Šafářová, Qiang Li, Jens Peter Froning, Jaroslav Granatier, Pavel Hobza, Radek Zbořil, Flemming Besenbacher, Mingdong Dong, and Michal Otyepka,“Quantification of the Interaction Forces between Metals and Graphene by Quantum Chemical Calculations and Dynamic Force Measurements under Ambient Conditions”, ACS Nano, (2013), pp 1646–1651
[1.9] K.Rabaey and W.Verstraete,“Microbial Fuel Cell:Novel Biotechnology for Energy Generation”, Trends in Biotechnology, 23, (2005), pp291-298
[1.10] Qian Qiu Zhao, Arthur Boxman and Uma Chowdhry,“Nanotechnology in the chemical industry – opportunities and challenges”, Journal of Nanoparticle Research , 5, (2003), pp567–572
[1.11] Jaeyun Kim, Ji Eun Lee, Soo Hyeon Lee, Jung Ho Yu, Jung Hee Lee, Tae Gwan Park, and Taeghwan Hyeon,“Designed Fabrication of a Multifunctional Polymer Nanomedical Platform for Simultaneous Cancer-Targeted Imaging and Magnetically Guided Drug Delivery”, Advanced Materials, 20, (2008), pp478-483
[1.12] Johannes V. Barth, Giovanni Costantini, and Klaus Kern,“Engineering atomic and molecular nanostructures at surfaces”, Nature, 437, (2005), pp671-679
[1.13] Mauricio Terronesa, Andrés R. Botello-Méndezb, Jessica Campos-Delgadoc,Florentino López-Uríasd, YadiraI. Vega-Cantúd, Fernando J. Rodríguez-Macíasd, Ana Laura Elíase, Emilio Munoz-Sandoval,Abraham G. Cano-Márquezd, Jean-Christophe Charlierb, Humberto Terrones,“Graphene and graphite nanoribbons: Morphology,properties, synthesis, defects and applications” Nano Today, 5, (2010), pp351-372
[1.14] G.Schmid and F.C.Lifeng,“Metal Clusters and Colloids”, Adv. Mater., 10, (1998), pp515-526
[1.15] J.D.Holmes, K.P.Johnston, R.C.Doty and B.A.Korgel,“Control of Thickness and Orientation of Solution-Grown Silicon Nanowire”, Science, 287, (2000), pp1471-1473
[1.16] M.H.Huang, S.Mao, H.Feick, H.Yan, Y.Wu, H.Kind, E.Weber, R.Russo and P.Yang,“Room-Temperature Ultraviolet Nanowire Nanolasers”, Science, 292, (2001), pp1897-1899
[1.17] E.W.Wnag, P.E.Sheehan and C.M.Lieber,“Nanobeam Mechanics:Elasticity, Strength and Toughness of Nanorods and Nanotubes”, Science, 277, (1997), pp1971-1975
[1.18] L.D.Hicks and M.S.Dresselhaus,“Thermoelectric Figure of Merit of a One-Dimensional Conductor”, Phys. Rev. B, 47, (1993), pp16631-16634
[1.19] Satyanarayana V.N.T. Kuchibhatla, A.S. Karakoti, Debasis Bera and S. Seal,“One dimensional nanostructured materials”, Progress in Materials Science, 52, (2007), pp699-913
[1.20] Y.Wu, R.Fan and P.Yang,“Block-by-block Growth of Single-crystalline Si/SiGe Superlattice Nanowires”, Nano Lett., 2, (2002), pp83-86
[1.21] J. K. N. Mbindyo, T. E. Mallouk, I. Kratochvilova, B.Razavi, T. S. Mayer, and T. N. Jackson, "Template Synthesis of Metal Nanowires Containing Monolayer Molecular Junctions," J. Am. Chem. Soc., 124, (2002), pp4020-4026
[1.22] K.P.Musselman, A.Marin, A.Wisnet, C.Scheu, J.L.MacManus-Driscoll and L.Schmidt-Mende,“A Novel Buffering Technique for Aqueous Processing of Zinc Oxide Nanostructures and Interfaces, and Corresponding Improvement of Electrodeposited ZnO-Cu2O Photovoltaics”, Adv, Funct. Mater., 21, (2011), pp573-582
[1.23] A.M.Morales and C.M.Lieber,“A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires”, Science, 279, (1998), pp208-211
[1.24] Y.Zhang, T.Ichihashi, E.Landree, F.Nihey and S.Iijima,“Heterostructures of Single-Walled Carbon Nanotubes and Carbide Nanorods”, Science, 285, (1999), pp.1719-1722
[1.25] Y.Cuil and C.M.Lieber,“Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks”, Science, 291, (2001), pp.851-853
[1.26] J.Hu, L.S.Li, W.Yang, L.Manna, L.W.Wang and A.P.Alivisatos,“Linearly Polarized Emission from Colloidal Semiconductor Quantum Rods”, Science, 292, (2001), pp.2060-2063
[1.27] I.C.Liao. S.Y.Chew and K.W.Leong,“Aligened Core-Shell Nanofibers Delivering Bioactive Proteins”, Nanomedicine, (2006), pp.465-471
[1.28] Yongan Yang , Ou Chen , Alexander Angerhofer , and Y. Charles Cao,“Radial-Position-Controlled Doping in CdS/ZnS Core/Shell Nanocrystals”, JACS,128, (2006), pp.12428–12429
[1.29] Chin-Hua Hsieh, Li-Jen Chou, Gong-Ru Lin ,Yoshio Bando and Dimitri Golberg,“Nanophotonic Switch:Gold-in-Ga2O3 Peapod Nanowires”, Nano Lett. ,8, (2008), pp.3081–3085
[1.30] R.S.Wagner and W.C.Ellis,“Vapor-Liquid-Solid Mechanism of Single Crystal Growth”, Appl.Phys.Lett., 4, (1964), pp89-90
[1.31] Yat Li, Fang Qian, Jie Xiang, and Charles M. Lieber,“Nanowire Electronic and Optoelectronic Devices”, Materialtoday, 9, (2006), pp18-27
[1.32] Haiping He, Chao Liu, Luwei Sun and Zhizhen Ye,“Temperature-Dependent Photoluminescence Properties of Porous Silicon Nanowire Arrays”, Appl. Phys. Lett. 99, (2011), pp123106-1-123106-3
[1.33] Younan Xia, Peidong Yang, Yugung Sun, Yiying Wu, Brain Mayers, Byron Gates, Yadong Yin, Franklin Kim and Haoquan Yan,“One-Dimensional Nanostructures:Synthesis, Characterization and Applications”, Adv.Mater., 15, (2003), pp353-389
[1.34] Yiying Wu and Peidong Yang,“Direct Observation of Vapor-Liquid-Solid Nanowire Growth”, J. Am. Chem. Soc. , 123, (2001), pp 3165-3166
[1.35] M.C.Johnson, C.J.Lee, E.D..Bourret-Courchesne, S.L.Konsek, S.Aloni, W.Q.Han and A.Zettl,“Growth and Morphology of 0.80 eV Photoemitting Indium Nitride Nanowires”, Appl.Phys.Lett., 85, (2004), pp5670-5672
[1.36] T.J.Trentler, K.M.Hickman, S.C.Goel, A.M.Viano, P.C.Dibbons and W.E.Buhro,“Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors:an Analogy to Vapor-Liquid-Solid Growth”, Science, 270, (1995), pp1791-1794
[1.37] Rui-Qin Zhang, Yeshayahu Lifshitz and Shuit-Tong Lee,“Oxide-Assisted Growth of Semiconducting Nanowires”, Adv.Mater., 15, (2003),pp635-640
[1.38] W.S.Shi, Y.F.Zheng, N.Wang, C.S.Lee and S.T.Lee,“Oxide-Assisted Growth and Optical Characterization of Gallium-Arsenide Nanowires”, Appl.Phys.Lett., 78, (2001), pp3304-3306
[1.39] M. N. Ou, T. J. Yang, S. R. Harutyunyan, Y. Y. Chen, C. D. Chen and S. J. Lai,“Electrical and thermal transport in single nickel nanowire”, Appl.Phys.Lett., 92, (2008), pp063101-1-063101-3
[1.40] J. Spiegel, L. Piraux, and I. Huynen,“Ferromagnetic material with negative permeability for tunable left-handed devices”, Proceeding of EuMC, (2007), pp1-4
[1.41] Schmidt H,“Nanoparticles by chemical synthesis, processing to materials and innovative applications”, Appl. Organomet. Chem., 15, (2001), pp331-343
[1.42] H. Pan, B. Liu, J. Yi, C. Poh, S. Lim, J. Ding, Y. Feng, C. H. A. Huan, and J. Lin, “Growth of Single-Crystalline Ni and Co Nanowires via Electrochemical Deposition and Their Magnetic Properties”, J.Phys. Chem.B, 109, (2005), pp3094-3098
[1.43] X. W. Wang, G. T. Fei, X. J. Xu, Z. Jin, and L. D. Zhang,“Size-Dependent Orientation Growth of Large-Area Ordered Ni Nanowire Arrays”, J.Phys.Chem.B, 109, (2005), pp24326-24330
[1.44] J.H.Yen, C.C.Lin, I.C.Leu and M.H.on,“Growth Characteristics of Electrodeposition of Ni Nanowires”, Journal of Materials Science and Engineering, 2, (2003), pp113-116
[1.45] Gerhard Muller et al,“Status and Outlook of Emerging Nonvolatile Memory Technologies”, IEEE. (2004)
[1.46] 高士,”非揮發性記憶體明日之星—快閃IC「RRAM」發展動向”, 零組件雜誌, 167, (2005), pp78-88
[1.47] Sheikholeslami and P.G.Gulak et al,“A Survey of Circuit Innovation in Ferroelectric Random Access Memories”, Microelectronic Engineering, 86, (2009), pp1870-1875
[1.48] 簡昭欣,呂正傑,陳志遠,張茂男,許世祿and趙天生“先進記憶體簡介”,國研科技創刊號
[1.49] Rainer Waser, Regina Dittmann, Georgi Staikov and Kristof Szot,“Redox-Based Resistive Switching Memories- Nanoionic Mechanisms, Prospects, and Challenges”, Adv. Mater., 21, (2009), pp 2632–2663
[1.50] Akihito Sawa,“Resistive Switching in Transition Metal Oxide”, Materialtoday, (2008), pp28-36
[1.51] R. Waser, M. Aono, “Nanoionics-based resistive switching memories”, Nature Materials, 6, (2007), pp833-840
[1.52] U. Russo, D. Jelmini, C. Cagli, A. L. Lacaita, S. Spigat, C. Wiemert, M. Peregot and M. Fanciullit,“Conductive-Filament Switching Analysis and Self-Accelerated Thermal Dissolution Model for Reset in NiO-Based RRAM”, IEEE Technical Digest International Electron Devices Meeting, (2007), pp775-778
[1.53] K. Terabe, T. Hasegawa, T. Nakayama and M. Aono,“Quantized Conductance Atomic Switch”, Nature, 433, (2005), pp47-51
[1.54] Nuo Xu, Lifeng Liu, Xiao Sun, Xiaoyan Liu, Dedong Han, Yi Wang, Ruqi Han, Jinfeng Kang, and Bin Yu,“Characteristics and Mechanism of Conduction/Set Process in TiN/ZnO/Pt Resistance Switching Random-Access Memories”, Appl.Phys.Lett., 92, (2008), pp23-1-23-3
[1.55] N. Xu, B. Gao, L. F. Liu, B. Sun, X. Y. Liu, R. Q. Han, J. F. Kang, and B. Yu, “A Unified Physical Model of Switching Behavior in Oxide-Based RRAM ”, VLSI, 100, (2008)
[1.56] T.B.Massalski, J.L.Murray, L.H.Bennett, H.Baker,“Binary Alloy Phase Diagrams”, American Society for Meatls, (1987), pp1737
[1.57] I.G.Baek, M.S.Lee, S.Seo, M.J.Lee, D.H.Seo, D.S.Suh, J.C.Park, S.O.Park, H.S.Kim, I.K.Yoo, U.I.Chung and J.T.Moon,“Highly Scalable Non-Volatile Resistive Memory Using Simple Binary Oxide Driven by Asymmetric Unipolar Voltage Pulses”, IDEM Tech. Dig., (2004)
[1.58] Hiroyuki Akinaga and Hisashi Shima,“Resistive Random Access Memory(ReRAM) Based on Metal Oxide”, IEEE, (2010), pp.2237-2251
[1.59] K.Kinoshita, T.Tamura, M.Aoki, Y.Sugiyama and H.Tanaka,“Bias Polarity Dependent Data Retention of Resistive Random Access Memory Consisting of Binary Transition Metal Oxide”, Appl. Phys. Lett. 89, 103509 (2006)
[1.60] K.Oka, T.Yanagida, K.Nagashima, H.Tanaka, and T.Kawai,“Nonvolatile Bipolar Resistive Memory Switching in Single Crystalline NiO Heterostructured Nanowires”, JACS., 131, (2009), pp3434-3435
[3.1] “Magnetic Field Assisting DC Electrodeposition: General Methods for High-Performance Ni Nanowire Array Fabrication”, J. Phys. Chem. B 2005, 109, 14852-14854
[3.2] O. Kohmoto, H. Nakagawa, Y. Isagawa and A. Chayahara,“Effect of Heat Treatment on the Oxygen Content and Resistivity in Sputtered NiO Films”, Journal of Magnetism and Magnetic Materials, 226-230, (2001), pp.1629-1630
[3.3] David Adler and Julius Feinleib,“Electrical and Optical Properties of Narrow-band Materials”, Phys. Rev.B2, (1970),pp. 3112–3134
[3.4] L. Goux, J. G. Lisoni, M. Jurczak, D. J. Wouters, L. Courtade and Ch. Muller ,“Coexistence of the bipolar and unipolar resistive-switching modes in NiO cells made by thermal oxidation of Ni layers”, JOURNAL OF APPLIED PHYSICS,107,(2010)