簡易檢索 / 詳目顯示

研究生: 陳妮君
論文名稱: CMOS熱電式紅外線熱像攝影系統焦面陣列之設計與製造
Design and Fabrication of Focal Plane Array of CMOS Thermoelectric Infrared Imager
指導教授: 陳榮順
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 49
中文關鍵詞: 紅外線溫度感測熱像
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出以CMOS MEMS技術為基礎,製作熱電式紅外線熱像儀之4×4焦面陣列,其感測結構具有Pixel面積小、填充率高、製程簡單等優點;並設計一數位訊號處理電路,依序傳送單一感測元件訊號,再將感測放大電路整合其中,以建立一完整的紅外線熱像儀之FPA系統。最後以tsmc 0.35 μm 2P4M標準製程及體型微加工後製程實現此系統,並建立實驗架構以量測晶片之感測訊號。

    初步實驗結果發現On-chip 放大電路可將小訊號放大約618倍,適合用於本文之熱電式紅外線感測器;在數位訊號處理方面,利用類比開關做出類比訊號之多工器,由模擬結果發現,輸出訊號上雖有時脈變化之突波,但在類比開關ON時,小訊號可順利通過類比多工器。


    第一章 緒論 1 1.1研究背景與動機 1 1.2文獻回顧 2 1.2.1 感測器的種類 2 1.2.2 熱型紅外線感測器的種類與比較 3 1.2.3 熱電式紅外線微感測器 4 1.3 本文架構 7 第二章 系統架構與元件分析 8 2.1 焦面陣列系統架構與紅外線微感測器簡介 8 2.2 熱電效應原理與熱電偶選擇 10 2.3 感測器性能指標 13 2.4 電壓量測電路架構 15 2.5 陣列式系統訊號處理電路之設計 19 第三章 模擬結果與製程簡介 21 3.1感測器結構之熱傳模擬 21 3.2感測電路之模擬與分析 23 3.3 陣列式系統訊號處理電路之模擬與分析 27 3.4感測器之後製程流程 32 3.5光罩佈局 33 第四章 實驗架設與實驗結果 40 4.1 感測器後製程結果與討論 40 4.2 感測器結構之物性分析 43 第五章 結論與未來工作 45 5.1 本文目前之貢獻 45 5.2 未來工作 45 參考文獻 47

    參考文獻
    [1] L. B. Carpenter, “Long path Detection of Atmospheric Contaminanta,” U. S. Patent 2930893, 1960.
    [2] R. D. Hudson and Jr. W. Hudson, “ The Military Applications of Remote Sensing by Infrared, ” Proceedings of the IEEE (ISSN: 0018-9219), vol. 1, no. 63, 1975, pp. 104-128.
    [3] G. J. Weil, “Computer-aided IR analysis of bridge deck delaminations,” Proceedings of the 5th IR information exchange, 1985, pp. 85-93.
    [4] K. Yamashita, A. Murata and M. Okuyama, “Golay-Cell Type of Miniaturized Infrared Sensor Using Si-Diaphragm,” in Proc. 1997 Int. Conf. Solid-State Sensors and Actuators, Chicago, Jun. 1997, pp. 1067-1070.
    [5] J. S. Shie, Y. M. Chen, M. Ou-Yang and B. C. S. Chou, “Characterization and Modeling of Metal-Film Microbolometer,” J. Microelectromech. Syst., vol. 5, no. 4, Dec. 1996, pp. 298-306.
    [6] K. C. Liddiard, “Thin-Film Resistance Bolometer IR Detectors,” Infrared Physics, vol. 24, no. 1, 1984, pp. 57-64.
    [7] M. F. Thompsett, “A Pyroelectric Thermal Imaging Camera Tube,” IEEE Trans. Electron Device, vol. 18, Nov. 1972, pp. 1070-1074.
    [8] R. W. Whatmore, “Pyroelectric Devices and Materials,” Rep. Prog. Phys., vol. 49, 1986, pp. 1335-1386.
    [9] 林耕舜,“CMOS熱電式紅外線微感測器之設計、製造、與系統整合”,國立清華大學動力機械工程學系碩士論文,2006。
    [10] R. Muanghlua, S. Cheirsirikul and S. Supadech, “The Study of Silicon thermopile,” Proceedings of TENCON 2000, vol. 3, 24-27 Sept, 2000, pp. 226-229.
    [11] A. D. Oliver and K. D. Wise, “A 1024-Element Bulk-Micromachined Thermopile Infrared Imaging Array,” Sensors and Actuators A, vol. 73, 1999, pp. 222-231.
    [12] A. Schaufelbuhl et al, “Uncooled Low-Cost Thermal Imager Based on Micromachined CMOS Integrated Sensor Array,” J. Microelectromech. Syst., vol. 10, no. 4, Dec. 2001, pp. 503-510.
    [13] H. K. Lee, J. B. Yoon, E. Yoon, S. B. Ju, Y. J. Yong, W. Lee and S. G. Kim, “A High Fill-Factor Infrared Bolometer Using Micromachined Multilevel Electrothermal Structures,’’ IEEE Transactions on Electron Devices, vol. 46, no. 7, July 1999, pp. 1489-1491.
    [14] H. Baltes, O. Paul and O. Brand, “Micromachined Thermally Based CMOS Microsensors,” Proceedings of the IEEE (ISSN: 0018-9219), vol. 86, no. 8, Aug. 1998, pp. 1660-1678.
    [15] M. Muller, W. Budde, R. Gottfried-Gottfried, A. Hubel, R. Jahne and H. Kuck , “A Thermoelectric Infrared Radiation Sensor with Monolithically Integrated Amplifier Stage and Temperature Sensor,’’ in Proc. 8th Int. Conf. Solid-State Sensors and Actuators, Sweden, June 25-29 1995, pp640-643.
    [16] B. C. S. Chou and M. Ou-Yang, “Thermopile Infrared Sensors Array and Method of Manufacturing the Same Thermopile Infrared Sensor,” U. S. Patent 6335478B1, 2002.
    [17] K. Liao, R. Chen and B. C. S. Chou, “Analysis and Design of Thermoelectric Infrared Microsensor,” in Proc. 2003 ASME Int. Mechanical Engineering Congress and Exposition, 16-21 Nov, 2003.
    [18] S. M. Rezaul, Nazmul Ula, “A novel feed-forward compensation technique for single-stage fully-differential CMOS folded cascade rail-to-rail amplifier,” Electrical Engineering (ISSN: 0948-7921), vol. 88, 2006, 509-517.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE