簡易檢索 / 詳目顯示

研究生: 林立夫
Li-Fu Lin
論文名稱: 微晶矽薄膜電晶體漏電機制之研究
The Study of Leakage Current in Microcrystalline Silicon Thin Film Transistors
指導教授: 葉鳳生
Fon-Shan Yeh
張鼎張
Ting-Chang Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 63
中文關鍵詞: 微晶矽漏電流機制
外文關鍵詞: microcrystalline silicon, leakage current, mechanism
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非晶矽薄膜電晶體已經被廣泛的應用,像是液晶顯示器(LCD)、固態X-ray或是近來的有機發光二極體(OLED)等等。非晶矽薄膜電晶體可以利用較低的成本製作在大面板尺寸上面,其可複製的元件特性也能適用在其他一些應用上。這點讓非晶矽薄膜電晶體的技術變得很有吸引性。但是將非晶矽薄膜電晶體應用在畫素的驅動元件時,其較低的電子遷移率和在偏壓下所導致的電性變差使其受到使用上的限制。另一方面,微晶矽薄膜電晶體因為它可像非晶矽般在大尺寸面板上應用,近年來被認為是一個有潛力的選擇。
    然而,研究微晶矽薄膜電晶體的人普遍都會遇到同樣的問題,那就是其漏電流過高的情況。過高的漏電流,對於應用在主動式有機發光二極體(AMOLED)的開關元件上面是會產生問題的。在這篇論文裡面,我們會把焦點放在微晶矽薄膜電晶體的漏電機制上面。
    在這裡,我們成功地利用電漿輔助化學氣相沉積去製作微晶矽薄膜。之後透過電漿在閘極絕緣層的處理,我們可以成長一個結晶度很高的微晶矽薄膜。而且我們對微晶矽薄膜電晶體的漏電機制做了一個探討,並且找到了一個方法可以去抑制它的漏電流。最後我們拿感應耦合電漿化學氣相沉積(ICP-CVD)的微晶矽和電漿輔助化學氣相沉積(PECVD)的微晶矽做比較。可以觀察到兩者之間會有不同的特性展現。


    Hydrogenated amorphous silicon (a-Si:H) thin film transistors (TFTs) are widely used in active matrix flat panel electronics such as liquid crystal displays (LCDs), solid-state X-ray imagers, and more recently, organic light emitting displays (OLEDs). With a-Si:H TFTs, reproducible device characteristics that suit a number of applications can be obtained over a large substrate area using a simple low cost fabrication process. This makes a-Si:H TFT technology very attractive. However, low field effect mobility and electrical degradation restrict the use of a-Si:H TFTs as pixel drivers. On the other hand, hydrogenated microcrystalline silicon (μc-Si:H) has recently received considerable attention as a viable alternative to its amorphous counterpart for large-area applications.
    However, people studying on microcrystalline silicon TFTs will encounter an issue that the leakage current of TFTs is about 100pA which is a very high value if to be used as a switching TFT for AMOLED display. In this present thesis, we focus on the mechanism of the leakage current in microcrystalline TFTs.
    In our work, we use plasma enhanced chemical vapor deposition (PECVD) to fabricate deposition of microcrystalline silicon (uc-Si) film successfully. Through plasma treatment at surface of gate dielectric, we has grown the uc-Si with high crystallization. And we investigate the mechanism of leakage current in uc-Si TFTs and find a way to suppress that. Finally, we compare with uc-Si deposited by ICP-CVD. And the different characteristics of uc-Si TFTs was observed between the ICP-CVD and PECVD.

    Chinese Abstract……………………………………….……………..I English Abstract……………………………………….………… ...III Acknowledgment……………………………………………..……...V Contents………………………………………………….………….VII Table Captions…………………………………………………….....X Figure Captions……………………………………………..............XI Chapter 1 - Introduction 1.1 Introduction…………………………………………………………..1 1.1.1 General Background……………………………………………1 1.1.2 Operation of AMLCD……………………………………….....4 1.2 Motivation……………………………………………………………6 1.2.1 Advantage of uc-Si for ION……………………………………..7 1.2.2 Advantage of uc-Si for IOFF…………………………………….9 1.3 Thesis Outline…………………………………………………….....11 Chapter 2 - Experimental Procedures 2.1 Introduction…………………………………………………………12 2.2 Surface Plasma Treatment……………………………………….….14 2.3 Raman Analysis……………………………………………………..16 2.4 SEM Analysis…………………………………………………….…18 2.5 Device Fabrication Flow……………………………………………19 Chapter 3 - Results and Discussion 3.1 The Electric Characteristics of uc-Si TFTs………………...….……23 3.1.1 NH3 Plasma Treatment………………………………….....….23 3.1.2 N2 Plasma Treatment ……………………………………....…24 3.1.3 H2 Plasma Treatment……………………………………….…25 3.2 Mechanism and Suppression of Leakage Current in uc-Si TFTs …..27 3.3 Comparison Between ICP-CVD and PECVD………………………30 3.3.1 HDPCVD BEN Method………………………………………30 3.3.2 Determination of Poly Si…………………………………...…31 3.3.2.1 TEM Analysis………………………………………….31 3.3.2.2 RAMAN Analysis…………………………….……….31 3.3.3 Comparison Between ICP-CVD and PECVD…………………….32 Chapter 4 - Conclusion References..…………………………………………………...............35 Tables.……………………..…………………...……….…..................39 Figures…………………………………..…………………………….42

    Chapter 1
    [1.1] H. K. Chung, Proc. of IMID `05, 891, Seoul, South Korea (2005).
    [1.2] L.H. Teng, W.A. Anderson, Solid- State Electronics 48, 309-314 (2004).
    [1.3] C. H. Lee, A. Sazonov, A. Nathan, Appl. Phys. Lett., 86, 222106 (2005)
    [1.4] I-C. Cheng, S. Allen, S. Wagner, Journal of Non-Crystalline Solids 338–340, 720–724 (2004).
    [1.5] H. J. Kim, B.Y. Diep, Y. Bonnassieux, Y. Djeridane, A. Abramov, R.C. Pere, Proc. of IMID `05, 1025, Seoul, South Korea (2005).
    [1.6] M. Lisachenko, M. Kim, C. Kim, S. W. Lee, K. B. Kim, J. W. Seo, K. Y. Lee, H. D. Kim and H. K. Chung, ”Development of Microcrystalline Si for TFT Backplanes,“ SID 06 DIGEST, P19, p. 250-253.
    [1.7] C.-H. Lee, A. Sazonov, and A. Nathan, “High-mobility nanocrystalline silicon thin-film transistor fabricated by plasma-enhanced chemical vapor deposition,” Appl. Phys. Lett., vol. 86, no. 22, p. 222 106, May 2005.
    [1.8] I.-C. Cheng and S. Wagner, “Nanocrystalline silicon thin film transistors,” Proc. Inst. Electr. Eng.—Circuits Devices Syst., vol. 150, no. 4, pp. 339–344, Aug. 2003.
    [1.9] L. Teng and W. A. Anderson, “Thin-film transistors on plastic and glass substrates using silicon deposited by microwave plasma ECR-CVD,” IEEE Electron Device Lett., vol. 24, no. 6, pp. 399–401, Jun. 2003.
    [1.10] C.-H. Lee, D. Striakhilev, S. Tao, and A. Nathan, “Top-gate TFTs using 13.56 MHz PECVD microcrystalline silicon,” IEEE Electron Device Lett., vol. 26, no. 9, pp. 637–639, Sep. 2005.
    [1.11] P. Roca i Cabarrocas, R. Brenot, P. Bulkin, R. Vanderhaghen, B. Drévillon, and I. French, “Stable microcrystalline silicon thin-film transistors produced by the layer-by-layer technique,” J. Appl. Phys., vol. 86, no. 12, pp. 7079–7082, Dec. 1999.
    [1.12] T. Tsujimura, “Amorphous/microcrystalline silicon thin film transistor characteristics for large size OLED driving,” Jpn. J. Appl. Phys., vol. 43, no. 8A, pp. 5122–5128, 2004.
    [1.13] C.-H. Lee, D. Striakhilev, and A. Nathan, “Stability of nc-Si:H TFTs With Silicon Nitride Gate Dielectric,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 54, NO. 1, JANUARY 2007, p. 45-51.
    [1.14] C.Mcandrew and P. A. Layman,”Mosfet effective channel length threshold voltage and series resistance determination by robust optimization” IEEE Trans. Electron Devices,39(10),2298(1992)
    [1.15] J. Robertson and M. J. Powell, J. Non-Cryst Solids, 77-78,1007(1985).
    [1.16] S. M. Sze, SEMICONDUCTOR DEVICES Physics and Technology 2ndEDITION, Ch.9, section.1, Wiley, New York, 2001
    Chapter 2
    [2.1]V. L. Dalal, S. Kaushal, E.X. Ping, J. Xu, R. Knox and K. Han, Proc. Of Mater.
    Res. Society, 377, 137(1995)
    [2.2]R. Bruggemann, A. Hierzenberger, P. reinig, M. Rojahn, M. B. Schubert, S.
    Schweitzer, H. N. Wank and I. Zrinscak, J. Non-Cryst. Solids, 227-230,
    982(1998)
    [2.3] A. Masuda, R. Iiduka, A. Heya, C. Niikura and H. Matsumura, J. Non-Cryst.
    Solids, 227-230, 987(1998)
    [2.4] J.K. Rath, Solar Energy Materials & Solar Cells, 76, 431–487(2003)
    [2.5] U. K. Das, P. Chaudhuri, S. T. Kshirsagar, J. Appl. Phys. 80 (9), 5389-5397 (1996).
    [2.6] M. Lisachenko, M. Kim, C. Kim, S. W. Lee, K. B. Kim, J. W. Seo, K. Y. Lee, H. D. Kim and H. K. Chung, ”Development of Microcrystalline Si for TFT Backplanes,“ SID 06 DIGEST, P19, p. 250-253.
    [2.7] Akihisa Matsuda, “Microcrystalline silicon.Growth and device application,” Journal of Non-Crystalline Solids 338–340 (2004) 1–12.
    [2.8] Z. Iqbal, S. Veprek, A.P. Webb, P. Capezzuto, Solid State Commun. 37, 993 (1981).
    [2.9] E. Bustarret, M.A. Hachicha, M. Brunel, Appl. Phys. Lett., 52, 1675 (1988).
    Chapter 3
    [3.1] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. New York:Wiley, 1981.
    [3.2] C.-H. Lee, D. Striakhilev, and A. Nathan, “Stability of nc-Si:H TFTs With Silicon Nitride Gate Dielectric,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 54, NO. 1, JANUARY 2007, p. 45-51.
    [3.3] S. Tripathia, N. Venkataramanib,*, R.O. Dusanea, B. Schroederc, “One-dimensional simulation study of microcrystalline silicon thin films for solar cell and thin film transistor applications using AMPS-1D,” Thin Solid Films 501 (2006) 295 – 298
    [3.4] J. Kocka, A. Fejfar, H. Stuchlı′kova′, J. Stuchlı′k, P. Fojtı′k, T. Mates, B. Rezek, K. Luterova′, V. Svrcek, I. Pelant, Sol. Energy Mater. Sol. Cells 78 (2003) 493.
    [3.5] Gaisler, S. V.; Semenova, O. I.; Sharafutdinov, R. G.; Kolesov, B. A.. Physics of the Solid State, Aug2004, Vol. 46 Issue 8, p1528-1532, 5p; DOI: 10.1134/1.1788789; (AN 14110520)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE