研究生: |
吳讚晃 Tsan-Huang Wu |
---|---|
論文名稱: |
熱處理對離子鍍著氮氧化鋯薄膜產生相分離及相變化之研究 Heat Treatment Induced Phase Separation and Phase Transformation of Zr(N,O) Thin Films by Ion Plating |
指導教授: |
黃嘉宏
Jia-Hong Huang 喻冀平 Ge-Ping Yu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 89 |
中文關鍵詞: | 氮氧化鋯 、相變化 、熱處理 、氮氧化物 |
外文關鍵詞: | Zr(N,O), phase transformation, heat treatment, oxynitride |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用中空陰極離子鍍著系統於p型(100)矽基板上成功製備出由氮化鋯和單斜晶系二氧化鋯所共同組成的奈米晶氮氧化鋯薄膜。隨著鍍膜過程的通氧量由0 增加到10 sccm,鍍著薄膜的主要組成相由純氮化鋯轉變為接近非結晶狀結構,進而轉變為單斜晶二氧化鋯相。經過熱處理後,通氧量為8和10 sccm 的試片出現因熱處理所導致的相變化現象,該相變化顯示出固定計量比的結晶性氮氧化鋯(Zr2ON2)結構的生成是由單斜晶二氧化鋯內含氮缺陷的結構所轉變而來。本研究中討論了熱處理前後氮氧化鋯薄膜所發生的相分離和相變化現象,並且提出一個假說來解釋其機制。
針對熱處理前後之於鍍著氮氧化鋯薄膜的成分、微結構和各性質間的影響也在本研究中有所探討。其中發現到熱處理所導致的相變化現象顯著地降低了氮氧化鋯薄膜中的殘餘應力,而且在經歷攝氏900度的熱處理後會使得所有試片的整體薄膜殘餘應力呈現幾乎和各組成相的殘餘應力趨於一致。此外,大部份薄膜的堆積密度在熱處理過後明顯地上升;尤其是熱處理後所導致相變化發生的通氧量為8和10 sccm的試片。而隨著薄膜含氧量的增加,鍍著薄膜的顏色漸漸由金黃色轉變為深灰色;且可以發現到熱處理前後薄膜的顏色則大部份皆維持不變。
Nanocrystalline Zr(N,O) thin films, consisting of ZrN and monoclinic ZrO2 were successfully deposited on p-type Si (100) substrates using hollow cathode discharge ion-plating (HCD-IP) system. With the increase of oxygen flow rate ranging from 0 to 10 sccm, the primary phase for as-deposited films evolved from pure ZrN phase to nearly amorphous structure and further to a single m-ZrO2 phase. After annealing, heat treatment induced phase transformation in the samples deposited at 8 and 10 sccm oxygen flow rates, which revealed that stoichiometric crystalline Zr2ON2 was derived from the m-ZrO2 structure containing N defects. Phase separation and phase transformation of Zr(N,O) thin films before and after annealing was discussed, and a hypothesis was proposed to explain the phenomenon.
The effect of heat treatment on the composition, microstructure and properties of the as-deposited Zr(N,O) films was also investigated. Phase transformation induced by heat treatment might significantly relieve the residual stress, and the residual stress of whole thin films was almost equal to that of each constituent phase for all samples after 900 ℃ annealing. In addition, the packing density of thin films mostly increased significantly after heat treatment, especially for the samples at 8 and 10 sccm oxygen flow rates, which undergone phase transformation induced by annealing. The coloration for as-deposited films varied from light gold to slate gray as the oxygen content increased, and it remained mostly the same before and after heat treatment.
[1] U.K. Wiiala, I.M. Penttinen, A.S. Korhonen, Surf. Coat. Technol., 41 (1990) 191.
[2] L. V. Leaven, M.N. Alias, R. Brown, Surf. Coat. Technol., 53 (1992) 25.
[3] P. Panjan, B. Navinsek, A. Zabkar, Dj. Mandrino, J. Fiser, Thin Solid Films, 228 (1993) 233.
[4] P.C. Johnson, H. Randhawa, Surf. Coat. Technol., 33 (1987) 53.
[5] E. Kelesoglu, C. Mitterer, M.K. Kazmanli, M. Urgen, Surf. Coat. Technol., 116-119 (1999) 133.
[6] E. Budke, J. Krempel-Hesse, H. Maidhof, H. Schussler, Surf. Coat. Technol., 112 (1999) 133.
[7] J. H. Huang, K. H. Chang, G. P. Yu, Surf. Coat. Technol., 201 (2007) 6404.
[8] Z. E. Tsai, “Effect of Oxygen Flow Rate on the Structure and Properties of Nanocrystalline Zr(N,O) Thin Film”, Master Thesis, 2005, National Tsing Hua University, R.O.C.
[9] S. H. Chiu, “Synthesis and Characterization of Nano-crystalline TiNxOy Thin Films by Unbalanced Magnetron Sputtering System (UBMS)”, 2006, Master Thesis, National Tsing Hua University, R.O.C.
[10] K. C. Lan, “Study of Nano-crystalline Zr(N,O) Thin Films on Si Substrate by Ion-Plating”, Master Thesis, 2007, National Tsing Hua University, R.O.C.
[11] M. Lerch, E. Fueglein, J. Wrba, Z. Anorg. Allg. Chem., 622 (1996) 367.
[12] W. H. Baur, M. Lerch, Z. Anorg. Allg. Chem., 622 (1996) 1729.
[13] M. Lerch, J. Am. Ceram. Soc., 79 (1996) 2641.
[14] M. Lerch, F. Krumeich, R. Hock, Solid State Ionics, 95 (1997) 87.
[15] M. Lerch, O. Rahauser, J. Mater. Sci., 32 (1997) 1357.
[16] M. Lerch, J. Mater. Sci. Lett., 17 (1998) 441.
[17] A. T. Tham, C. Rodel, M. Lerch, D. Wang, D. S. Su, A. Klein-Hoffmann, R. Schlogl, Cryst. Res. Technol., 39, No. 5, 421 (2004).
[18] S. J. Clarke, C. W. Michie, M. J. Rosseinsky, J. Sol. Stat. Chem., 146 (1999) 399.
[19] R. Fraunchy, Surf. Sci. Rep., 38 (2000) 195.
[20] M. Ohring, “The Materials Science of Thin Films”, Academic Press Inc, San Diego, 1992, p. 511.
[21] Y. S. Lai, C. H. Lu, L. M. Chen, J. S. Chen, J. Electro. Soci., 152 (9) (2005) 146.
[22] D. I. Bazhanov, A. A. Knizhnik, A. A. Safonov, A. A. Bagatur’yants, M. W. Stoker, A. A. Korkin, J. Appl. Phys., 97, 044108 (2005).
[23] S. Venkataraj, O. Kappertz, R. Jayavel, M. Wuttig, J. Appl. Phys., Vol. 92, No. 5, 1 September (2002).
[24] F. Vaz, P. Cerqueira, L. Rebouta, S.M.C. Nascimento, E. Alves, Ph. Goudeau, J.P. Riviere, Suf. Coat. Technol., 174 (2003) 197.
[25] F. Vaz, P. Cerqueira, L. Rebouta, S.M.C. Nascimento, E. Alves, Ph. Goudeau, J.P. Riviere, K. Psichow, J. de Rijk, Thin Solid Films, 447 (2004) 449.
[26] L. Cunha, F. Vaz, C. Moura, L. Rebouta, P. Carvalho, E. Alves, A. Cavaleiro, Ph. Goudeau, J. P. Riviere, Surf. Coat. Technol., 200 (2006) 2917.
[27] F. Vaz, P. Carvalho, L. Cunha, L. Rebouta, C. Moura, E. Alves, A. R. Ramos, A. Cavaleiro, Ph. Goudeau, J. P. Riviere, Thin solid films, 469 (2004) 274.
[28] S. C. Ferreira, E. Ariza, L. A. Rocha, J. R. Gomes, P. Carvalho, F. Vaz, AC. Fernandes, L. Rebouta, L. Cunha, E. Alves, Ph. Goudeau, J. P. Riviere, Surf. Coat. Technol., 200 (2006) 6634.
[29] P. Carvalho, F. Vaz, L. Rebouta, S. Carvalho, L. Cunha, Ph. Goudeau, J. P. Riviere, E. Alves, A. Cavaleiro, Surf. Coat. Technol., 200 (2005) 748.
[30] P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C. J. Tavares, C. Moura, E. Alves, A. Cavaleiro, Ph. Goudeau, E. Le Bourhis, J. P. Rivière, J. F. Pierson, O. Banakh, J. Appl. Phys, 98, 023715 (2005).
[31] N. Martin, O. Banakh, A. M. E. Santo, S. Springer, R. Sanjines, J. Takadoum, F. Levy, Appl. Surf. Sci. 185 (2001) 123.
[32] C. Rousselot, N. Martin, Surf. Coat. Technol., 142 (2001) 206.
[33] N. Martin, R. Sanjines, J. Takadium, F. Levy, Surf. Coat. Technol., 142 (2001) 615.
[34] J. M. Chappe, N. Martin, G. Terwagne, J. Lintymer, J. Gavoille, J. Takadoum, Thin Solid Films, 440 (2003) 66.
[35] W. Ensinger, A. Schroer, G. K. Wolf, Nucl. Instrum. Meth. Phys. Res. B, 80/81 (1993) 445.
[36] R. A. Dugdale, J. Mater. Sci., 1 (1996) 160.
[37] C. Mitterer, J. Komenda-Stallmaier, P. Losbichler, P. Schmolz, W.S.M. Werner, H. Stori, Vaccum, 46 (1995) 1281.
[38] B. Zega, Surf. Coat. Technol., 39/40 (1989) 507.
[39] R. Juza, A. Gabel, A. Rabenau, and W. Klose, Z. Anorg. Allg. Chem. 332, 1 (1964).
[40] V. P. Orlovski, N. V. Rudenko, and B. N. Ivanov-Emin, Russ. J. Inorg. Chem. 12 (1967), 1217.
[41] P. Prieto, L. Galan, and J. M. Sanz, Phys. Rev. B 47 (1993), 1613.
[42] Yajimata, Y. Segawa, R. Matsuzaki, and Y. Saeki, Bull. Chem. Soc. Jpn., 56 (1983), 2638.
[43] W. J. Chou, C. H. Sun, G. P. Yu, J. H. Huang, Mater. Chem. Phys., 82 (2003) 228.
[44] H. M. Tung, “Effect of Bias and heat treatment on the microstructure and properties of ZrN film deposited by filter cathodic arc ion-plating”, Master Thesis, 2004, National Tsing Hua University, R.O.C.
[45] Milosev, H.-H. Strehblow, M. Gaberscek, B. Navinsek, Surf. and Interf. Anal., 24 (1996) 448.
[46] W. J. Chou, G. P. Yu, J. H. Huang, Suf. Coat. Technol., 149 (2002), 7.
[47] A. H. Heuer, M. Ruhle, “Phase Transformation in ZrO2 –Containing Ceramics: I, The Instability of c-ZrO2 and the Resulting Diffusion-Controlled Reactions”, 1984, The American Ceramic Society.
[48] Z. W. Zhao, B. K. Tay, G. Q. Yu, S. P. Lau, J. Phys.: Condens. Mat., 15 (2003) 7707.
[49] S. Venkataraj, O. Kappertz, C. Liesch, R. Detemple, R. Jayavel, M. Wutting, Vacuum, 75 (2004) 7.
[50] A. Hidaka, J. Nakamura, J. Sugimoto, Nucl, Eng. Des., 168 ( 1997) 361.
[51] K. Maca, H. Hadraba, J. Cihlar, Nucl. Eng. Des., 168 (1997) 361
[52] A. Emeline, G.V. Kataeva, A. S. Litke, A. V. Rudakova,V. K. Ryabchuk, N. Serpone, Langmuir, 14 (1998) 5011.
[53] F. Cernuschi, S. Ahmaniemi, P. Vuoristo, T. Mantyla, J. Eur. Ceram. Soc., 24 (2004) 2657.
[54] X. J. Chen, K. A. Khor, S. H Chan, L. G. Yu, Mater. Sci. Eng. A335 (2002) 246.
[55] Cheol Seong Hwang, Hyeong Joon Kim, J. Mater. Res. 8 (1993) 6.
[56] M. G. Krishna, K. Narasimha, S. Mohan, Thin Solid Films, 193-194 (1990) 690.
[57] W. W. Davison, R. C. Buchanan, “Advances in Ceramics”, M. F. Yan , American Ceramic Society, Westerville, OH, 1989, Vol. 26, p. 513.
[58] H. Myoren, Y. Nishiyama, H. Fukumoto, H. Sasu, and Y. Osaka, Jpn. J. Appl. Phys., 28 (3) (1989) 351.
[59] S. S. Sim, P-Y. Chu, R. H. Krabill, and D. E. Clark, “Ultrastructure Processing of Advanced Ceramics”, J. D. Mackenzie, John Wiley & Sons, New York, 1988, p. 995.
[60] J. C. Gilles, Bull. Soc. Chim. Fr., 22 (1962) 2118.
[61] R. Collongues, J. C. Gilles, A. M. Lejus, M. Perez, Y. Jorba, D. Michel, Mater. Res. Bull., 2 (1967) 837.
[62] Y. B. Cheng, D. P. Thompson, J. Am. Ceram. Soc., 74 (5) (1991) 1135.
[63] Y. B. Cheng, D. P. Thompson, J. Am. Ceram. Soc., 76 (3) (1993) 683.
[64] R. B. Von dreele, L. Eyring, A. L. Bowman, J. L. Yarnell, Acta. Crystallogr., B31 (1975) 971.
[65] M. R. Thornber, D. J. M. Bevan, J. Graham, ibid., B24 (1968) 1183.
[66] Sanghun Jeon, C. J. Choi, T. Y. Seong, Hyunsang Hwang, Appl. Phys. Lett., V. 79, (2) 2001.
[67] H. J. Cho, C. S. Kang, K. Onishi, S. Gopalan, R. Nieh, S. Krishan, J. C. Lee, IEEE Elec. Dev. Lett., 23 (2002) 249.
[68] S. Niyomsoan, W. Grant, D.L. Olson, B. Mishra, Thin Solid Films, 415 (2002) 187.
[69] Jean-Marie Chappe, Nicolas Martin, Guy Terwagne, Jan Lintymer, Joseph Gavoille, Jamal Takadoum, Thin Solid Films, 440 (2003) 66.
[70] Y. Makino, M. Nose, T. Tanaka, M. Misawa, A. Tanimoto, T. Nakai, K. Kato, K. Nogi, Surf. Coat. Technol., 98 (1998) 934.
[71] L. Hultman, Vacuum, 57 (2000) 1.
[72] D. Briggs and M. P. Seah (eds), “Practical Surface Analysis by AES and XPS”, Wiley, Chichester (1983).
[73] http://www.cem.msu.edu/~cem924sg/XPSASFs.html
[74] P. Scherrer, Gött. Nachr, 2 (1918) 98.
[75] Leonid V. Azaroff and Martin J. Buerger, “The Powder Method in X-Ray Crystallography”, McGraw-Hill, New York (1958), p.233.
[76] G. G. Stoney, Proc. R. Soc. Lond, A82 (1909) 17.
[77] Wenwu Zhang, Y. Lawrence Yao, I. C. Noyan, J. Manuf. Sci. Eng., 126 (2004) 10-17.
[78] C.-H. Ma, J.-H. Huang, Haydn Chen, Thin Solid Films, 418 (2002) 73–78.
[79] A. J. Perry, Thin Solid Films, 193 (1990) 463-471.
[80] W. C. Oliver, G. M. Pharr, J. Mater. Res., 7(6) (1992) 1564-1583.
[81] American Society for Testing Materials, Symposium on Color, ASTM, Philadelphia, PA, (1941), p.3.
[82] M. Del Re, R. Gouttebaron, J.-P. Dauchot, P. Leclere, G. Terwagne, M. Hecq, Surf. Coat. Technol., 174 (2003) 240.
[83] H. Wiame, M.-A. Centeno, S. Picard, P. Bastians, P. Grange, J. Europ. Ceram. Soc., 18 (1998) 1293.
[84] N. Y. Topsoe, J. A. Dumesic, and H. Topsoe, J. Catal., 151 (1995) 241-252.
[85] John C. Vickerman, “Surface Analysis- The Principal Techniques”, Wiley, Chichester, 1997, p. 58.
[86] JCPDS file 35-0753.
[87] JCPDS file 83-0944.
[88] JCPDS file 50-1170.
[89] D. Burgreen, “Elements of Thermal Stress Analysis”, C.P. Press, New York, 1971, p. 462.
[90] C. Y. Yeh, “Effect of heat treatment under controlled atmosphere on the properties of ZrN film deposited by HCD ion plate”, Master Thesis, 2004, National Tsing Hua University, R.O.C.
[91] M. Ohring, “Materials Science of Thin Films, Deposition and Structure”, 2nd edition, Academic Press Inc, San Diego, 2002, p. 62.
[92] I. A. Ovid’ko, Science, 295 (2002) 2386.
[93] J. E. Hove, W. C. Riley (Eds.), “Modern Ceramic: Some Principles and Concepts”, John Wiley, CA, 1965, p. 352.
[94] L. E. Toth, “Transition Metal Carbides and Nitrides”, Academic press, New York, 1971, p. 188.
[95] J. H. Huang, K. W. Lau, G. P. Yu, Surf. Coat. Technol., 191 (2005) 17.
[96] A. J. Perry, Vficlav Valvoda and David Rafaja, Thin Solid Films, 214 (1992) 169-174.
[97] E. Törok, A.J. Perry, L. Chollet, W.D. Sproul, Thin Solid Films, 153 (1987) 37.
[98] P. Jin, S. Maruno, Jpn. J. Appl. Phys., 30 (7) (1991) 1463.
[99] E. Budke, J. Krempel-Hesse, H. Maidhof, H. Schussler, Surf. Coat. Technol., 112 (1999) 133.
[100] H. Ottel, R. Wiedemann, S. Preißler, Sur. Coat. Technol., 74-75 (1995) 273.