簡易檢索 / 詳目顯示

研究生: 莊侑哲
You-Che Chuang
論文名稱: 利用垂直式有機三極體以實現反相器
Realization of the Inverters through Vertical-Type Organic Triodes
指導教授: 吳孟奇
Meng-Chyi Wu
朱治偉
Chih-Weu Chu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 52
中文關鍵詞: 有機薄膜電晶體垂直式結構反相器
外文關鍵詞: OTFT, vertical type, inverter
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,垂直式有機三極體 (vertical-type organic triodes) 是我們主要探討的方向,其中包含 p-通道及 n-通道垂直式有機三極體。而大多數的垂直式元件都是電流驅動,並且缺乏顯著的飽和區域與一個低的電流開關比。基於此原因,我們發現透過改變汲極-基極 (CB) 蕭特基 (Schottky) 二極體不同的材料比例來提升以 pentacene 為基底的垂直式有機三極體之特性。這個元件在基極-射極電壓 (VBE) 為 –5 V 與汲極-射極電壓 (VCE) 為 –7 V下擁有 80 μA 的高輸出電流,並且在 CuPc 佔基極-汲極蕭基特二極體厚度的一半時有最大的電流開關比為210。這種電壓控制的電晶體可以與一個負載串接以形成一個反相器,我們量測反相器的靜態與動態特性,它的頻率響應高達 kHz 以上。為了實現互補式的反相器,我們將探討 n-通道垂直式有機三極體的製程與特性。發展具有相同結構其以 C60 為基底的三極體可以證明垂直式的元件結構可以適用於替換各種的有機材料,甚至是 n-型材料也能運用於其中。這個元件在基極-射極電壓為 7 V 與汲極-射極電壓為 6 V下擁有 400 μA 的高輸出電流。最後,我們結合一個以 C60 為基底的垂直式有機三極體與一個以 pentacene 為基底的垂直式有機三極體,以形成垂直型的有機互補式反相器。這也確實大大地增加了運用垂直式有機三極體於積體電路 (integrated circuits) 的可能性。


    In this thesis, p-channel and n-channel vertical organic triodes are investigated. Majority of the vertical devices are current driven. Moreover, they lack an apparent saturation region and a low on/off current ratio. Therefore, we demonstrate the performance enhancement of pentacene-based vertical organic triodes by adjusting the rectification ratio of base-collector (CB) Schottky diodes. This device exhibits a high output current of 80 μA at VBE = –5 V and VCE = –7 V and a maximum on/off current ratio of 210 at the CuPc/CB diode thickness ratio of 0.5. This kind of voltage-controlled transistors can be cascaded with a load to form an inverter which frequency response is up to kilo-hertz. In order to realize the complementary inverters, the fabrication and the characteristics of n-channel vertical organic diodes are investigated. The develop of C60-based triodes with similar device structures also proves the vertical structure is suitable for alternate organic materials, even n-type materials. This device exhibits a high output current of 400 μA at VBE = 7 V and VCE = 6 V. Finally, we integrate a C60-based vertical triode with a pentacene-based vertical triode to perform the vertical-type organic complementary inverters. It indeed increases the possibility of applying the vertical-type organic triodes to the integrated circuits.

    Chapter 1 Introduction 1 1-1 Motivation and general overview of OTFTs 1 1-2 Organization of this Thesis 4 Chapter 2 Experimental details 7 2-1 Evaporation 7 2-2 Atomic Force Microscopy 9 2-3 Current-Voltage Measurement 10 Chapter 3 High Performance of Vertical-Type Organic Triodes by Adjusting the Rectification Ratio of Base-Collector Schottky Diode 17 3-1 Introduction 17 3-2 Experimental 19 3-3 Results and Discussion 21 3-4 Conclusions 25 Chapter 4 N-Type Vertical Organic Triodes and the Organic Complementary Inverters 32 4-1 Introduction 32 4-2 Experimental 34 4-3 Results and Discussion 36 4-4 Conclusions 39 Chapter 5 Summary 45 References 47 Publication list 50

    [1] Tsumura, H. Koezuka, and T. Ando, Appl. Phys. Lett. 49, 1210 (1986).
    [2] S. Fujimoto, K. Nakayama, and M. Yokoyama, Appl. Phys. Lett. 87, 133503 (2005).
    [3] N. Stutzmann, R. H. Friend, and H. Sirringhaus, Science 299, 1881 (2003).
    [4] R. Parashkov, E. Becker, S. Hartmann, G. Ginev, D. Schneider, H. Krautwald, T. Dobbertin, D. Metzdorf, F. Brunetti, C. Schildknecht, A. Kammoun, M. Brandes, T. Riedl, H. H. Johannes, and W. Kowalsky, Appl. Phys. Lett. 82, 4579 (2003).
    [5] Y. Yang, and A. J. Heeger, Nature 372, 344 (1994).
    [6] D. X. Wang, Y. Tanaka, M. Iizuka, S. Kuniyoshi, K. Kudo, and K. Kanaka, Jpn. J. Appl. Phys. 38, 256 (1999).
    [7] Y. Watanabe, and K. Kudo, Appl. Phys. Lett. 87, 223505 (2005).
    [8] G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,”
    Phys. Rev. Lett., vol.56, pp. 930-933, 1986.
    [9] T. R. Albrecht, S. Akamine, T. E. Carver, and C. F. Quate,
    “Microfabrication of cantilever styli for the atomic force
    microscope,” J. Vac. Sci. Technol. A, vol. 8, pp. 3386-3396, 1990.
    [10] L. P. Ma and Y. Yang, Appl. Phys. Lett. 85, 5084 (2004).
    [11] K. Kudo, M. Iizuka, S. Kuniyoshi, and K. Tanaka, Thin Solid Films, 393, 362 (2001).
    [12] Y. C. Chao, M. H. Xie, M. Z. Dai, H. F. Meng, S. F. Horng, and C. S. Hsu, Appl. Phys. Lett. 92, 093310 (2008).
    [13] T. M. Ou, S. S. Cheng, C. Y. Huang, M. C. Wu, I. M. Chan, S. Y. Lin, and Y. J. Chan, Appl. Phys. Lett. 89, 183508 (2006).
    [14] C. Y. Yang, T. M. Ou, S. S. Cheng, M. C. Wu, S. Y. Lin, I. M. Chan, and Y. J. Chan, Appl. Phys. Lett. 89, 183511 (2006).
    [15] S. S. Cheng, C. Y. Yang, Y. C. Chuang, C. W. Ou, M. C. Wu, S. Y. Lin, Y. J. Chan, Appl. Phys. Lett. 90, 153509 (2007).
    [16] K. Kudo, D. X. Wang, M. Iizuka, S. Kuniyoshi, and K. Tanaka, Thin Solid Films, 331, 51 (1998).
    [17] Y. C. Chao, H. F. Meng, S. F. Horng, and C. S. Hsu, Organic Electronics, 9, 310 (2008).
    [18] K. H. Lee, J. M. Choi, S. Im, B. H. Lee, K. K. Im, M. M. Sung, and S. Lee, Appl. Phys. Lett. 91, 123502 (2007).
    [19] Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, IEEE Trans. Electron Devices 18, 606 (1997).
    [20] M. M. Ling, Z. Bao, P. Erk, M. Koenemann, and M. Gomez, Appl. Phys. Lett. 90, 093508 (2007).
    [21] D. J. Gundlach, K. P. Pernstich, G. Wilckens, M. Gruter, S. Haas, and B. Batlogg, J. Appl. Phys. 98, 064502 (2005).
    [22] L. Ma, J. Ouyang, and Y. Yang, Appl. Phys. Lett. 84, 4786 (2004).
    [23] Y. C. Chuang, S. S. Cheng, Dhananjay, C. W. Ou, M. C. Wu, and C. W. Chu, unpublished.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE