研究生: |
賴青沂 Ching-Yi Lai |
---|---|
論文名稱: |
量子穩定碼的建構法 A Construction of Quantum Stabilizer Codes |
指導教授: |
呂忠津
Chung-Chin Lu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 53 |
中文關鍵詞: | 量子穩定碼 、建構法 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Abstract
今日量子力學在物理、數學、資訊等各種領域已經大量發展,而量子訊息理論已經是一門蓬勃發展的學科。如同錯誤更正碼在傳統的訊息理論中所佔據的地位,量子錯誤更正碼在量子訊息理論之中也扮演了一個不可或缺的角色。在量子錯碼更正碼的研究當中,量子穩定碼幾乎是最重要的一種編碼。量子穩定碼是和傳統線性碼相類似的一種量子碼,它的性質和編碼、解碼已經被廣泛的討論和深入的研究。在這篇論文裡,我們將會集中討論關於量子穩定碼的建構法,並且討論一些目前已知的量子穩定碼,關於其他的主題在此不會討論。首先,我們會介紹量子穩定碼的基本性質以及目前最實用且便利的建構法—Calderbank Shor Steane建構法,以及擴充Calderbank Shor Steane建構法。接下來我們將提出一種新的但是很簡單的想法,利用傳統的二元奇偶檢驗矩陣,我們可以得到一些量子穩定碼。此外,由這種建構法得到的量子穩定碼會具有額外增加的錯碼更正能力,可以修正一些額外的錯誤運算子。透過這個建構法,我們會利用傳統的里德-穆勒碼的二元奇偶檢驗矩陣來造出一系列的量子穩定碼。我們更進一步提出一個增加錯誤更正能力的方法,透過一種特殊的列的排列矩陣,這種量子穩定碼的最小距離可以增加一半。最後,我們特別討論了三種不同的量子循環碼。第一種量子循環碼是利用循環建構法得到的量子穩定碼,第二種是量子正交留數碼,第三種是量子的博斯-喬赫里-霍根漢碼。在最後的結論部分,我們會提出幾個未來研究思考的方向。
Abstract
Quantum information theory is a well-developed discipline today. Like classical
information theory, one central part of quantum information theory is
quantum error correction. In quantum coding theory, stabilizer codes are
probably the most important class of quantum codes. They are regarded as
the quantum analogue of the classical linear codes and the properties of stabilizer
codes have been carefully studied in the literature. In this thesis, we
focus on the construction of stabilizer codes and discuss some known quantum
codes. We will propose a new but simple perspective on construction by
classical parity-check matrices.
Bibliography
[1] P. W. Shor, \Rapid communications," Physical Review A, vol. 52, no. 4,
pp. 2493{2496, 1995.
[2] A. M. Steane, \Error correcting codes in quantum theory," Physical Re-
view Letttter, vol. 77, no. 5, pp. 793{797, 1996.
[3] ||, \Simple quantum error-correcting codes," Physical Review A,
vol. 54, no. 6, pp. 4741{4751, 1996.
[4] A. Ekert and C. Macchiavello, \Quantum error-correction for communication,"
Physical Review Letttter, vol. 77, no. 12, 1996.
[5] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K.
Wootters, \Mixed state entanglement and quantum error correction,"
Physical Review A, vol. 54, pp. 3824{3851, 1996. [Online]. Available:
http://arxiv.org/abs/quant-ph/9604024
[6] R. La
amme, C. Miquel, J. P. Paz, and W. H. Zurek, \Perfect quantum
error correcting codes," Physical Review Letttter, vol. 77, no. 1, pp. 198{
201, 1996.
[7] E. Knill and R. La
amme, \A theory of quantum error-correcting codes,"
Physical Review A, vol. 55, no. 2, p. 900V911, 1997.
[8] A. R. Calderbank and P. W. Shor, \Good quantum error-correcting
codes exist," Physical Review A, vol. 54, no. 2, pp. 1098{1105, 1996.
[Online]. Available: http://arxiv.org/abs/quant-ph/9512032
[9] A. M. Steane, \Multiple particle interference and quantum error
correction," Proc. R. Soc. London A, vol. 452, pp. 2551{2576, 1996.
[Online]. Available: http://arxiv.org/abs/quant-ph/9601029
[10] D. Gottesman, \Class of quantum error-correcting codes saturating the
quantum hamming bound," Physical Review A, vol. 54, no. 3, pp. 1862{
1868, 1996. [Online]. Available: http://arxiv.org/abs/quant-ph/9604038
[11] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane,
\Quantum error correction and orthogonal geometry," Physical Review
Letttter, vol. 78, no. 3, pp. 405{408, 1997. [Online]. Available:
http://arxiv.org/abs/quant-ph/9605005
[12] D. Gottesman, \Stabilizer codes and quantum error correction," Ph.D.
dissertation, California Institute of Technology, Pasadena, CA, 1997.
[Online]. Available: http://arxiv.org/abs/quant-ph/9705052
[13] A. M. Steane, \Enlargement of Calderbank-Shor-Steane quantum
codes," IEEE Trans. Inform. Theory, vol. 45, no. 7, pp. 2492{2495,
1999. [Online]. Available: http://arxiv.org/abs/quant-ph/9802061
[14] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane,
\Quantum error correction via codes over GF(4)," IEEE Trans. Inform.
Theory, vol. 44, no. 4, pp. 1369{1387, 1998. [Online]. Available:
http://arxiv.org/abs/quant-ph/9608006
[15] A. Ashikhmin and E. Knill, \Nonbinary quantum stabilizer codes,"
IEEE Trans. Inform. Theory, vol. 47, no. 7, pp. 3065{3072, 2001.
[Online]. Available: http://arxiv.org/abs/quant-ph/0005008
[16] E. M. Rains, \Nonbinary quantum codes," IEEE Trans. Inform.
Theory, vol. 45, no. 6, pp. 1827{1832, 1999. [Online]. Available:
http://arxiv.org/abs/quant-ph/9703048
[17] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information. Cambridge,UK: Cambirdge University Pressr, 2000.
[18] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes. Amsterdam: North-Holland, 1977.
[19] A. M. Steane, \Quantum Reed-Ruller codes," IEEE Trans. Inform.
Theory, vol. 45, no. 5, pp. 1701{1703, 1999. [Online]. Available:
http://arxiv.org/abs/arXiv:quant-ph/9608026
[20] G. Hohn, \Self-dual codes over the Kleinian four group," 1996, Updated
version. [Online]. Available: http://arxiv.org/abs/math.co/0005266
[21] E. M. Rains and N. J. A. Sloane, \Self-dual codes," in Handbook of
Coding Theory, V. S. Pless and W. C. Human, Eds. Amsterdam,The
Netherlands: Elsevier, 1998.
[22] P. Gaborit, W. C. Human, J.-L. Kim, and V.Pless, \On the classication
of extremal additive codes over GF(4)," in Proc. 37th Allerton Conf.
Communication, Control, and Computing, UIUC, 1999, pp. 535{544.
[23] ||, \On additive GF(4) codes," in Proc. DIMACS Workshop on Codes
and Association Schemes, ser. DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, A. Barg and S. Litsyn, Eds. Providence,
RI: AMS.
[24] J.-L. Kim and V.Pless, \Designs in additive codes over GF(4)," in
Proc. Allerton Conf. Communication, Control, and Computing, 2000,
pp. 1010{1018.
[25] H.-P. Tsai, \Existence of some extremal self-dual codes," IEEE Trans.
Inform. Theory, vol. 38, no. 6, pp. 1829 { 1833, 1992.
[26] V. Tonchev and V. Y. Yorgov, \The existence of certain extremal
[54; 27; 10] self-dual codes," IEEE Trans. Inform. Theory, vol. 42, no. 5,
pp. 1628 { 1631, 1996.
[27] S. Buyuklieva, \New extremal self-dual codes of lengths 42 and 44,"
IEEE Trans. Inform. Theory, vol. 43, no. 5, pp. 1607 { 1612, 1997.
[28] S. T. Dougherty, T. A. Gulliver, and M. Harada, \Existence of some
extremal self-dual codes," IEEE Trans. Inform. Theory, vol. 43, no. 6,
pp. 2036 { 2047, 1997.
[29] W. C. Human, \Characterization of quaternary extremal codes of
lengths 18 and 20," IEEE Trans. Inform. Theory, vol. 43, pp. 1613{
1616, 1997.
[30] I. Boukliev and S. Buyuklieva, \Some new extremal self-dual codes with
lengths 44, 50, 54, and 58," IEEE Trans. Inform. Theory, vol. 44, no. 2,
pp. 809 { 812, 1998.
[31] S. Dougherty and M. Harada, \New extremal self-dual codes of length
68," IEEE Trans. Inform. Theory, vol. 45, no. 6, pp. 2133 { 2136, 1999.
[32] M. Harada, \Construction of an extremal self-dual code of length 62,"
IEEE Trans. Inform. Theory, vol. 45, no. 4, pp. 1232 { 1233, 1999.
[33] ||, \New extremal self-dual codes of lengths 36 and 38," IEEE Trans.
Inform. Theory, vol. 45, no. 7, pp. 2541 { 2543, 1999.
[34] H.-P. Tsai, \Extremal self-dual codes of lengths 66 and 68," IEEE Trans.
Inform. Theory, vol. 45, no. 6, pp. 2129 { 2133, 1999.
[35] T. Gulliver, \Optimal double circulant self-dual codes over F4," IEEE
Trans. Inform. Theory, vol. 46, pp. 271{274, 2000.
[36] C. Bachoc and P. Gaborit, \On extremal additive GF(4)-codes of lengths
10 to 18," J. Theorie Nombres Bordeaux, vol. 12, pp. 225{271, 2000.
[37] J.-L. Kim, \New extremal self-dual codes of lengths 36, 38, and 58,"
IEEE Trans. Inform. Theory, vol. 47, no. 1, pp. 386 { 393, 2001.
[38] ||, \New self-dual codes over GF(4) with the highest known minimum
weights," IEEE Trans. Inform. Theory, vol. 47, no. 4, pp. 1575{1580,
2001.
[39] R. Dontcheva and M.Harada, \New extremal self-dual codes of length
62 and related extremal self-dual codes," IEEE Trans. Inform. Theory,
vol. 48, no. 7, pp. 2060 { 2064, 2002.
[40] T. Nishimura, \A new extremal self-dual code of length 64," IEEE Trans.
Inform. Theory, vol. 50, no. 9, pp. 2173 { 2174, 2004.
[41] T. A. Gulliver and J.-L. Kim, \Circulan based extremal additive selfdual
codes over GF(4)," IEEE Trans. Inform. Theory, vol. 50, no. 2, pp.
359{366, 2004.
[42] D. COPPERSMITH and G. SEROUSSI, \On the minimum distance of
some quadratic residue codes," IEEE Trans. Inform. Theory, vol. 30,
no. 2, pp. 407{411, 1984.
[43] N. Boston, \The minimum distance of the binary [137; 69] quadratic
residue code," IEEE Trans. Inform. Theory, vol. 45, no. 1, p. 282, 1999.
[44] T.-K. Truong, Y. Chang, and C.-D. Lee, \The weight distributions of
some binary quadratic residue codes," IEEE Trans. Inform. Theory,
vol. 51, no. 5, pp. 1776{1782, 2005.
[45] M. Grassl, \On the minimum distance of some quadratic-residue codes,"
in Proc. IEEE International Symposium on Information Theory, June
2000, pp. 253{253.
[46] M. Grassl and T. Beth, \Quantum BCH codes," in Proc. X. International
Symposium on Theoretical Electrical Engineering, Magdeburg, 1999, pp.
207{212. [Online]. Available: http://arxiv.org/abs/quant-ph/9910060
[47] S. A. Aly, A. Klappenecker, and P. K. Sarvepalli, \Primitive quantum
bch codes over nite elds," accepted by IEEE ISIT 2006. [Online].
Available: http://arxiv.org/abs/quant-ph/9910060
[48] ||, \On quantum and classical bch codes," Submitted, April 2006.
[Online]. Available: http://arxiv.org/abs/quant-ph/0604102