簡易檢索 / 詳目顯示

研究生: 熊韋茜
Hsiung, Wei-Chien
論文名稱: 垂直T型管氣泡流之CFD模式建立
CFD model development for bubbly flow in T-junction
指導教授: 馮玉明
Ferng, Yuh-Ming
林志宏
Lin, Chih-Hung
口試委員: 白寶實
Pei, Bau-Shei
曾永信
Tseng, Yung-Shin
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 67
中文關鍵詞: 雙相流T型管氣泡流數值模擬相分離
外文關鍵詞: Two-phase flow, T junction, Bubbly flow, Numerical analysis, Phase redistribution
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 流場分析於工業界各領域中相當重要,也是許多實驗與數值模擬的研究對象,而其中常見且重要的管路又以T型管為主。當T型管內的流體為雙相流體時,流體在流經管路分岔處後所產生的相分離現象會導致主管與側管的空泡分率產生變化,此一變化對管路之衝擊與出口壓力差的改變影響甚大,藉由數值模擬的分析,除了可以更加瞭解管道中流體的流動現象並且預測流場趨勢之外,與實驗數據進行分析比對,更可以做為驗證,增加模擬的可靠度及適用性。
    用於分析流場的技術很多,本研究室採用計算流體力學(Computational Fluid Dynamics, CFD)的方法計算,並且使用FLUENT進行運算,其先進的數值方法和後處理功能可以較精細的模擬並預測局部的流場情形,以減低流場誤差的發生,這種分析方法目前已經廣泛應用於熱流領域中。
    本研究所模擬分析的對象是本研究室自行搭設的垂直T型管路實驗抬架中的流場,T型管截面為圓形,其管徑長度0.026m,主管總長度為1.872m,側管總長度為0.676m。工作流體是空氣與水的雙相混和流體,在沒有溫度差異的條件下由T型管的下方進口,並由主管上方及側管流出,其流型為氣泡流。
    本研究在相對應的實驗條件下對該流場進行分析,藉由探討兩側出口壓差及改變不同的雙相流體進口速度、空泡分率等參數,分析在T型管分岔處的流場空泡分率分布、相分離情形、壓力分布、出口壓差變化等,並與實驗結果進行分析比對,最終建立一個可以應用於垂直T型管中且流型為氣泡流的運算模式。


    Multiphase flow analysis is an important research topic since it is a common phenomenon in lots of energy related industries. Numerous experiments and numerical analysis had been down by studied about it. Two-phase flow is a flow which consist of gas and liquid and is a particular example of multiphase flow.
    There are many kinds of pipelines used in industrial applications for transport two-phase flow. T junction is an significant component of pipeline systems. Few of studies of multiphase flow through T junction have been studied until 1980s, however, a great number of related research has shown up since then.
    This paper presents a model of two-phase flow which consist of air and water through T junction. The research will discuss the pressure difference between inlet and outlet and the phenomenon of phase redistribution. The flow pattern of the working fluid is bubbly flow and ANYSY FLUENT is chosen as the simulating software.

    摘要 i Abstract ii 致謝 iii 目錄 iv 表目錄 vi 圖目錄 vii 符號對照表 ix 第一章 緒論 1 1.1 研究背景 1 1.2研究目的 2 1.3分析工具 3 1.3分析流程 5 第二章 文獻回顧 7 第三章 理論基礎與數值模型 13 3.1物理模型 13 3.2統御方程式 15 3.3紊流模型(Turbulence Model) 16 3.4格點建立 18 3.5數值模式 21 3.6邊界條件與數值模擬設定 23 第四章 結果與討論 26 4.1兩側出口壓差分析 27 4.1.1 案例一:兩側出口壓差0 Pa 29 4.1.2 案例二:兩側出口壓差 5000 Pa 32 4.1.3全管壓力分布結果分析 35 4.1.4 小結 37 4.2 不同進口條件分析 38 4.2.1 壓力分布 39 4.2.2 空泡分率分布 46 4.2.3 兩側出口壓差結果 52 4.2.4相分離結果 57 第五章 結論 64 參考文獻 66

    [1] Christopher E. Brennen, “Fundamentals of Multiphase Flows”, California Institute of Technology, 2005
    [2] 潘欽,沸騰熱傳與雙向流,2001,411-425
    [3] T. Anderson, R. Jackson, A fluid mechanical description of fluidized beds, Ind. Eng. Chem. Fundam., 6 (4) (1967), pp. 527-539
    [4] S. Garg, J. Pritchett, Dynamics of gas-fluidized beds, J. Appl. Phys., 46 (10) (1975), pp. 4493-4500
    [5] Ishii, M ” Thermo-fluid dynamics Theory of two-phase flow,” Eyrolles, Paris, 1975
    [6] Dalhaye, J.M., 1981a, “Local Instantaneous Equations,” ch.5, Thermo-hydraulics of Two-phase Systems for Industrial Design and Nuclear Engineering, Ed. Delhyaye, J.M., Gio, M., and Riethmuller, M.L., Hemisphere Publishing Co., Washington.
    [7] Dalhaye, J.M., 1981b, “Instantaneous Space-averaged Equations,” ch.7, Thermo-hydraulics of Two-phase Systems for Industrial Design and Nuclear Engineering, “ Ed. Delhyaye, J.M., Gio, M., and Riethmuller, M.L., Hemisphere Publishing Co., Washington.
    [8] M. Popp and D.W. Sallet, “Experimental investigation of one- and two-phase flow through a tee-junction”, Physical Modeling of Multiphase Flow, Coventry, England, 1983.
    [9] M.R. Davis, B. Fungtamasan, “Two-phase flow through pipe branch junction”, International Journal of Multiphase Flow, 1990, 16(5):799-817.
    [10] R.I. Issa, P.J. Oliveria, “Numerical prediction of phase separation in two-phase flow through T-junctions”, Computers & Fluids, 1994, 23(2):347-372.
    [11] T. Stacey, B.J. Azzopardi, G. Conte, “The split of annular two-phase flow at a small diameter T-junction”, International journal of multiphase flow, 2000, 26(5):845-856.
    [12] G. Das, K. Dasp, B.J. Azzopari, “The split of stratified gas-liquid flow at a small diameter T-junction”, International journal of multiphase flow, 2005, 31(4):514-528.
    [13] B.G.M van Wachem, “Methods for multiphase computational fluid dynamics”, Chemical Engineering Journal, 2003,96, 81-98.
    [14] A.S Athulya, R. Miji Cherian, “CFD Modeling of Multiphase Flow through T Junction”, International Conference on Emerging Trends in Engineering, Science and Technology, (ICETEST-2015), 2016, 24:325-331
    [15] M. Ishii and T. Hibiki, Thermo-fluid dynamics of two-phase flow., Springer Science & Business Media, 2010.
    [16] J. Weisman, S.Y. Kang, “Flow pattern transitions in vertical and upwardly inclined lines” International Journal of Multiphase Flow, 1981, 7(3), 271-291.
    [17] Jiun-Ren Wang, Chung-Yen Hsu, Yuh-Ming Ferng “The Flow Visualization for the Separation of Air-water Bubbly Two-phase Flow Through a Vertical T-junction” 2017 American Nuclear Society Annual Meeting, San Francisco, CA, USA, June 11-15, 2017

    QR CODE