簡易檢索 / 詳目顯示

研究生: 安米特
Nain, Amit
論文名稱: 牛血清白蛋白模板合成之金屬奈米材料用於感測及抗菌應用
Synthesis of BSA-Templated Metal Nanostructures for Sensing and Antimicrobial Applications
指導教授: 曾繁根
Tseng, Fan-Gang
張煥宗
Chang, Huan-Tsung
口試委員: 黃志清
Huang, Chih-Ching
黃郁棻
Huang, Yu-Fen
林宗宏
Lin, Zong-Hong
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 217
中文關鍵詞: 牛血清白蛋白金屬奈米材料抗菌劑生物膜感測器
外文關鍵詞: Bovine Serum Albumin, Metals, Nanomaterials, Antimicrobials, Biofilms, Sensors
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米材料已不僅在材料合成與性質探討,而是能利用多功能奈米材料來面對全球健康危機,尤其是細菌感染與環境汙染問題,來創造出生物醫學與環境監控的真正實用價值。儘管許多相關研究正在進行中,但離真正商化目標還是相當遙遠。本博士論文的目的是設計具高生物相容性與應答性金屬奈米結構,並應用於臨床菌株抗菌與抗生物膜和環境水樣重金屬汙染檢測。
    細菌耐藥性和抗生素的發展緩慢是臨床細菌感染相當危機議題,尤其目前抗菌試劑對多重抗藥性(multidrug-resistant, MDR)細菌及其生物膜的抑制和移除仍有很大發展空間。首先,我們在牛血清白蛋白(bovine serum albumin, BSA)和1,3-丙二酚(1,3-propanedithiol, PDT)為模板和修試劑製備了光致發光之銅奈米簇(copper nanoclusters, Cu NCs)。所製備PDT/BSA-Cu NCs具有廣譜抗菌活性,包括耐甲氧西林金黃色葡萄球菌(methicillin-resistant S. aureus, MRSA)。 Cu NCs的最低抑菌濃度(Minimal inhibitory concentration, MIC)值比PDT和BSA-Cu NCs分別低⁓240和10倍。由於PDT的親脂性,超小尺寸奈米團簇(⁓2nm)可以與細菌膜相互作用,並誘導產生抗壞血酸(Asc·)和過羥基(HOO·)自由基的產生,從而破壞細菌細胞膜完整性還達多重抑菌效果。另一方面,PDT/BSA-Cu NCs對哺乳動物細胞的細胞毒性相當低。我們進一步證明PDT/BSA-Cu NCs塗層碳纖維織物(carbon fiber fabric, CFF)在防污應用中具有巨大潛力。
    在另一項研究中,硫化銅奈米晶體(copper sulfide nanocrystals, CuS NCs)由銅離子和BSA在鹼性溶液中加熱後所製備,在合成過程不須額外添加其它硫源。在高BSA濃度(0.8 mM)下,可形成了BSA–CuS NCs。除了它們固有的光熱特性,BSA-CuS NCs還具有豐富的硫和氧表面空位,因此表現出仿酶和光動力活性。過氧化氫(H2O2)的自發產生導致在BSA-CuS NC上原位形成過氧化銅(copper peroxide, CPO)奈米點以催化單線態氧(1O2)自由基產生。 透過近紅外光照射後因光動力和光熱之聯合作用,抗菌效果增強了60倍以上。此外,由於BSA-CuS NCs具有額外仿過氧化物酶活性,將NCs用於感染MRSA之傷口上,並在NIR照射下僅1分鐘,可將感染部位的H2O2轉化為羥基自由基,協同光熱效應可移除傷口>99%的細菌。最後,我們將鉍離子摻雜到CuxS NC中以製備BSA–BiZ/CuxS NC,其中BiZ代表Bi2S3和硫氧化鉍(bismuth oxysulfides, BOS)。因BiZ/CuxS異質接面、表面空位和可控能階變化,使BSA-BiZ/CuxS NC具有獨特光動力和光熱特性。BSA–BiZ/CuxS NCs不僅對標準MDR細菌菌株具有廣譜抗生物膜活性,而且近紅外光照射下對臨床分離的MDR細菌也具有廣譜的抗生物膜活性。因此,我們認為具有優異性能及高生物相容性的金屬奈米結構具有巨大潛力,可作為傳感探針及殺菌劑。
    在環境水樣重金屬汙染物監控方面,我們製備超小尺寸奈米團簇,其光學特性可以通過表面改質來控制。我們使用BSA和硫代水楊酸(thiosalicylic acid, TSA)合成了Au,Ag和Cu NCs。這些NCs具金屬核和金屬硫醇殼層,在各自的NCs中,質譜儀鑑定得知殼層的組成分別為Au38SR24,Ag9SR7和Cu314SRm。利用嗜金屬相互作用、金屬-硫醇錯合和/或螢光內濾效應誘導,NCs的螢光猝滅可進行Hg2 +、As3 +和Cr6 +的選擇性的偵測和定量,線性範圍分別為1350、120和50400 nM,且可應用於自來水、湖水和海水中這些重金屬的監控。


    Nanotechnology is going through a major paradigm shift for the development of multifunctional nanomaterials to circumvent global health crisis, thus creates a huge opportunity for discovery and innovation. Although the research is progressing but commercial impact still seems far-fetched. The objective of this thesis is to design stable metal nanostructures with interesting physicochemical properties to investigate their roles in antimicrobial and sensing applications.
    The rise in bacterial resistance and stagnant development of antibiotics is a medical emergency, and discovery of antimicrobial materials with desired efficacy against multidrug-resistant (MDR) bacteria and biofilms is still dwindling. Firstly, we prepared photoluminescent copper nanoclusters (Cu NCs) in the with bovine serum albumin (BSA) and 1,3-propanedithiol (PDT). As-prepared PDT/BSA–Cu NCs exhibit broad-spectrum antibacterial activity including multidrug-resistant bacteria (methicillin-resistant S. aureus; MRSA). Minimal inhibitory concentration (MIC) values of Cu NCs were ⁓250 fold lower than control samples. The ultra-small NCs (⁓2 nm) can interact with bacterial membrane due to the lipophilic nature of PDT and induce the generation of ascorbyl (Asc·) and perhydroxyl (HOO·) radicals, which resulted in disruption of their membrane integrity. The PDT/BSA–Cu NCs showed negligible cytotoxicity towards tested mammalian cell lines. We further demonstrated that low-cost PDT/BSA–Cu NCs-coated carbon fiber fabrics (CFFs) hold great potential in antifouling applications.
    In another study, copper sulfide nanocrystals (CuS NCs) were prepared by heating an alkaline solution containing copper ions and BSA without an additional sulfur source. In addition to their intrinsic photothermal properties, the BSA–CuS NCs possess rich surface vacancies, and therefore exhibit enzyme-like and photodynamic activities. Spontaneous generation of hydrogen peroxide (H2O2) led to the in situ formation of copper peroxide (CPO) nanodots on the BSA–CuS NCs to catalyze singlet oxygen (1O2) radical generation. The antimicrobial response was enhanced by >60-fold upon NIR laser irradiation, which was ascribed to the combined effect of the photodynamic and photothermal inactivation of bacteria. Furthermore, NCs were transdermally administered onto a MRSA-infected wound and eradicated >99% of bacteria in just 1 min under NIR illumination due to the additional peroxidase-like activity of BSA–CuS NCs, transforming H2O2 at the infection site into hydroxyl radicals and thus increasing the synergistic effect from photodynamic and photothermal treatment. Lastly, we doped bismuth ions into CuxS NCs to prepare BSA–BiZ/CuxS NCs, where BiZ represents Bi2S3 and bismuth oxysulfides (BOS). The BSA–BiZ/CuxS NCs with BiZ/CuxS heterojunctions, surface vacancies, and manipulated optical bandgap engender excellent photodynamic and photothermal properties. As-prepared BSA–BiZ/CuxS NCs exhibit broad-spectrum antibiofilm activity not only against standard MDR bacterial strains but also against clinically isolated MDR bacteria upon near-infrared (NIR) irradiation. Therefore, we believe that metal nanostructures with exceptional properties and high biocompatibility holds a great potential as a sensing probe and biocide.
    Optical properties of tiny NCs can be manipulated via surface modification. We synthesized Au, Ag and Cu NCs using BSA and thiosalicylic acid (TSA). The MNCs has metal core and metal–thiolate shell, where shell species were Au38–SR24, Ag9–SR7 and Cu3–14–SRm in the respective NCs. PL quenching of MNCs induced through metallophilic interaction, metal–thiol complexation and/or inner filter effect enabled the quantitation of Hg2+, As3+, and Cr6+ ions, with linear ranges of 1–350, 1–20, and 50–400 nM, and limits of detection of 0.25, 0.34 and 3.54 nM, respectively in sea water.

    Table of Content Chapter 1 : Introduction ………………………………………………………………………. 1 1.1. Introduction to nanomaterials……………...……………………………………………….... 1 1.2. Synthesis of metal nanostructures …………………………………………………….....…... 1 1.2.1. Metal nanoclusters (M NCs)……………………………………………………. .…. 2 1.2.2. Copper sulfide nanocrystals (CuS NCs)…………………………………………...... 2 1.2.3. Bi doped copper sulfide nanocomposites (Bi/CuS NCs)………………………......... 3 1.3. Properties of copper based nanomaterials………………………………………………...….. 3 1.3.1. Fenton chemistry……………………………………………………………..….…... 3 1.3.2. Photoresponsive action…………………………………………………… … …….. 4 1.3.3. Chemodynamic response………………………………………………………..…... 4 1.3.4. Heterostructure and vacancy formation… …..…………………………………..…... 5 1.4. Applications of copper based nanomaterials…………………...……………………………. 5 1.4.1. Antimicrobial………………………………………………………………………..... 5 1.4.1.1 Antibacterial textile…………………………………………………… ……... 6 1.4.1.2 Wound healing…………………………………………………………… ….. 6 1.4.1.3 Antibiofilm…………………………………………………………………… 7 1.4.2. Heavy metal sensing…………………..…………………………………………… ... 7 1.5. References…………………………………………………………………………………… 7 Chapter 2 : Capping 1, 3-propanedithiol to boost the antibacterial activity of protein-templated copper nanoclusters……………………………………………………………….. 14 2.1. Introduction……………………………………………………………………………….... 14 2.2. Experimental Section………………………………………………………………………. 17 2.2.1. Chemicals…………………………………………………………………………… 17 2.2.2. Synthesis of BSA–Cu NCs and BSA/PDT–Cu NCs……………………………….. 18 2.2.3. Characterization of Cu NCs………………………………………………………… 18 2.2.4. Bacterial culture…………………………………………………………………….. 19 2.2.5. Antibacterial assays………………………………………………………………… 20 2.2.6. TEM Images of Bacteria……………………………………………………………. 20 2.2.7. Permeability of Bacterium Membranes…………………………………………….. 21 2.2.8. Reactive Oxygen Species (ROS) Assays………………………………………….... 21 2.2.9. Bacterial Viability Assays…………………………………………………………... 21 2.2.10. In vitro Cytotoxicity Assays………………………………………………………... 22 2.2.11. Hemolysis Assays…………………………………………………………………... 23 2.2.12. Functionalization of carbon fiber fabrics (CFFs) and bacterial inactivation efficiency test…………………………………………………………………………………... 23 2.3. Results and discussion……………………………………………………………………... 24 2.3.1. Synthesis and characterization of BSA–Cu NCs…………………………………… 24 2.3.2. Antibacterial activity………………………………………………………………... 28 2.3.3. Antibacterial mechanism…………………………………………………………… 30 2.3.4. Biocompatibility of PDT3.6/BSA–Cu NCs…………………………………………. 32 2.3.5. Antibacterial PDT3.6/BSA–Cu NCs–coated carbon fiber fabrics…………………... 33 2.4. Conclusions………………………………………………………………………….……... 35 2.5. References………………………………………………………………………………..… 35 Chapter 3 : Copper sulfide nanoassemblies for catalytic and photoresponsive eradication of bacteria from infected wounds………………………………………………………………... 59 3.1. Introduction…………………………………………………………………………..…….. 59 3.2. Experimental Section………………………………………………………………...…….. 62 3.2.1. Chemicals…………………………………………………………...…...…….... 62 3.2.2. Synthesis of of BSA–CuS NCs and CTAB/BSA–CuS NCs ……..…....……..... 63 3.2.3. Characterization of BSA–CuxS NCs…………………………………..….…,.... 64 3.2.4. Photoresponsive properties of BSA–CuxS NCs……………………...….,….….. 65 3.2.5. Bacterial Cultures and Antibacterial Assays …………………………..….,..….. 65 3.2.6. In vivo antibacterial activity……………………………………………...…,..… 64 3.2.7. TEM images of bacteria……………………………………….………......,…… 66 3.2.8. Reactive Oxygen Species (ROS) Assays……………………….……...…,..…... 67 3.2.9. Bacterial Viability Assays……………………………………………..…...,…... 68 3.2.10. In vitro Cytotoxicity Assays………………………………………..….…..…… 69 3.2.11. Hemolysis Assays…………………………………………………....…….…… 69 3.2.12. In vivo Biocompatibility Evaluation………………………………...…….….… 70 3.3. Results and Discussion………………………………………………………...……..…..... 71 3.3.1. Synthesis and Characterization of BSA–CuxS NCs……………….....……...…. 71 3.3.2. Formation of CPO Nanodots in BSA–CuxS NCs …………………....……..….. 74 3.3.3. Catalytic and Photoresponsive Properties of BSA0.8–CuxS NCs ….…..…...…... 75 3.3.4. Antibacterial properties and mechanism………………………….……..…...…. 80 3.3.5. Stability and Biocompatibility Evaluation of CTAB/BSA0.8–CuxS NCs…….… 84 3.3.6. In Vivo Antimicrobial Application of CTAB/BSA0.8–CuxS/CPO NCs ……....... 86 3.4. Conclusion……………………………………………………………………………..…... 87 3.5. References………………………………………………………………………………….. 88 Chapter 4 : Bimetallic sulfide heterojunctions in BSA templated copper/bismuth nanocomposites augment photoeradication of clinical isolates…………………......…..….. 120 4.1. Introduction……………………………………………………………………….……….. 120 4.2. Experimental Section…………………………………………….……………………….. 123 4.2.1. Chemicals…………………………………………………………………….... 123 4.2.2. Synthesis of BSA–BiZ/CuxS NCs……………………………………...……... 124 4.2.3. Characterization of BSA–BiZ/CuxS, –CuxS, and –Bi2S3 Nanomaterials …...... 124 4.2.4. Photoresponsive Assays of BSA–BiZ/CuxS NCs …………………...…...….... 126 4.2.5. Bacterial Cultures and Antibacterial Assays….………………………..….….. 127 4.2.6. Antimicrobial Susceptibility of BSA–BiZ/CuxS NCs against Clinical Isolates. 127 4.2.7. Bacterial Viability Assays ……………...……………………………………... 128 4.2.8. Reactive Oxygen Species (ROS) Assays…..……………………...…………... 129 4.2.9. Permeability of Bacterium Membranes..………………………………….…... 129 4.2.10. SEM and TEM images of Bacteria..………………………………………...… 130 4.2.11. In vitro Cytotoxicity Assays……………………………….………………….. 131 4.2.12. Hemolysis Assays……………………………………………………………... 131 4.2.13. Antibiofilm Activity of BSA–BiZ/CuxS NCs…………………………………. 132 4.3. Results and Discussion………………………………………………………………….... 133 4.3.1. Synthesis and Characterizations of Composite Nanomaterials………….……. 133 4.3.2. Formation of Heterojunctions in BiZ/CuxS NCs….…………………………... 134 4.3.3. Photoresponsive Properties and Mechanism……..………………………….... 136 4.3.4. Antimicrobial Susceptibility and Mechanism…………………………………. 139 4.3.5. In Vitro Cytotoxicity Assays………………….……………………………….. 142 4.3.6. Antibiofilm Activity of BSA–BiZ/CuxS NCs………...……………………….. 143 4.4. Conclusion…………………………………………………………………….………….. 144 4.5. References…………………………………………………………………..…………….. 144 Chapter 5 : Tuning the photoluminescence of metal nanoclusters for selective detection of multiple heavy metal ions……………………………………………………………….….… 174 5.1. Introduction………………………………………………………………………….….… 174 5.2. Experimental Section…………………………………………………………….….……. 176 5.2.1. Chemicals…………………………………...……………………………..…... 176 5.2.2. Synthesis of TSA/BSA–MNCs……………………...…………………..…….. 177 5.2.3. Characterization of TSA/BSA–MNCs………………...………………..……... 177 5.2.4. Detection of Hg2+, As3+, and Cr6+ using TSA/BSA–MNCs……...……..…….. 179 5.2.5. Detection of Hg2+, As3+, and Cr6+ in real samples…………………...…..……. 179 5.2.6. Detection of Hg2+, As3+, and Cr6+ in real samples……………...…………..…. 180 5.3. Results and Discussion………………………………………………………………..….. 181 5.3.1. Synthesis of TSA/BSA–MNCs…………………………………...….……..…. 181 5.3.2. Sensing of Hg2+, As3+, and Cr6+ ions by TSA/BSA–MNCs………....…..……. 185 5.3.3. Detection of Hg2+, As3+, Cr6+ ions in real water sample…………....……..…... 188 5.4. Conclusions……………………………………………………………………….…..…... 189 5.5. References……………………………………………………………………...….…...…. 190 Chapter 6 : Conclusion and prospectives……………..………………………………...…… 215 6.1. Conclusion……………………………………………………………………...…………. 215 6.2. Future Prospective……………………………………………………………..………….. 217

    Chapter 1

    1 Boverhof, D. R.; Bramante, C. M.; Butala, J. H.; Clancy, F. H.; Lafranconi, M.; West, J.; Gordon, S. C. Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regul. Toxicol. Pharmacol. 2015, 73 (1), 137-150
    2. Barman, S. R.; Nain, A.; Jain, S.; Punjabi, N.; Mukherji, S.; Satija, J. Dendrimer as a Multifunctional Capping Agent for Metal Nanoparticles for use in Bioimaging, Drug Delivery and Sensor Applications. J. Mater. Chem. B 2018, 6, 2368-2384.
    3. Gupta, A.; Mumtaz, S.; Li, C.-H.; Hussain, I.; Rotello, V. M. Combatting Antibiotic-Resistant Bacteria Using Nanomaterials. Chem. Soc. Rev. 2019, 48 (2), 415–427.
    4. Comode, D. P.; Gao, L.; Koo, H. Emerging biomedical applications of enzyme-like catalytic nanomaterials. Trends. Biotechnol. 2019, 36 (1), 15–29.
    5. Xie, Y.; Riedinger, A.; Prato, M.; Casu, A.; Genovese, A.; Guardia, P.; Sottini, S.; Sangregorio, C.; Miszta, K.; Ghosh, S.; Pellegrino, T.; Manna, L., Copper Sulfide Nanocrystals with Tunable Composition by Reduction of Covellite Nanocrystals with Cu+ Ions. J. Am. Chem. Soc. 2013, 135 (46), 17630–17637.
    6. Hsu, C.-L.; Li, Y.-J.; Jian, H.-J.; Harroun, S. G.; Wei, S.-C.; Ravindranath, R.; Lai, J.-Y.; Huang, C.-C.; Chang, H.-T., Green synthesis of catalytic gold/bismuth oxyiodide nanocomposites with oxygen vacancies for treatment of bacterial infections. Nanoscale 2018, 10 (25), 11808–11819.
    7. Wang, X.; Zhang, C.; Du, J.; Dong, X.; Jian, S.; Yan, L.; Gu, Z.; Zhao, Y., Enhanced Generation of Non-Oxygen Dependent Free Radicals by Schottky-type Heterostructures of Au–Bi2S3 Nanoparticles via X-ray-Induced Catalytic Reaction for Radiosensitization. ACS Nano 2019, 13 (5), 5947–5958.
    8. Kim, K.; Lee, K.; So, S.; Cho, S.; Lee, M.; You, K.; Moon, J.; Song, T., Fenton-Like Reaction between Copper Ions and Hydrogen Peroxide for High Removal Rate of Tungsten in Chemical Mechanical Planarization. ECS J. Solid State Sci. Technol. 2018, 7 (3), 91–95.
    9. Pham, A. N.; Xing, G.; Miller, C. J.; Waite, T. D., Fenton-like copper redox chemistry revisited: Hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production. J. Catal. 2013, 301, 54–64.
    10. Josef, P., Fenton chemistry in biology and medicine. Pure Appl. Chem. 2007, 79 (12), 2325–2338.
    11. Liu, Y.; Guo, Z.; Li, F.; Xiao, Y.; Zhang, Y.; Bu, T.; Jia, P.; Zhe, T.; Wang, L., Multifunctional Magnetic Copper Ferrite Nanoparticles as Fenton-like Reaction and Near-Infrared Photothermal Agents for Synergetic Antibacterial Therapy. ACS Appl. Mater. Interfaces 2019, 11 (35), 31649–31660.
    12. Wang, T.; Zhang, H.; Liu, H.; Yuan, Q.; Ren, F.; Han, Y.; Sun, Q.; Li, Z.; Gao, M., Chemodynamic Therapy: Boosting H2O2-Guided Chemodynamic Therapy of Cancer by Enhancing Reaction Kinetics through Versatile Biomimetic Fenton Nanocatalysts and the Second Near-Infrared Light Irradiation. Adv. Funct. Mater. 2020, 30 (3), 2070019.
    13. Lin, L.-S.; Huang, T.; Song, J.; Ou, X.-Y.; Wang, Z.; Deng, H.; Tian, R.; Liu, Y.; Wang, J.-F.; Liu, Y.; Yu, G.; Zhou, Z.; Wang, S.; Niu, G.; Yang, H.-H.; Chen, X., Synthesis of Copper Peroxide Nanodots for H2O2 Self-Supplying Chemodynamic Therapy. J. Am. Chem. Soc. 2019, 141 (25), 9937–9945.
    14. Esmailpour, A. A.; Moradi, S.; Yun, J.; Scott, J.; Amal, R., Promoting surface oxygen vacancies on ceria via light pretreatment to enhance catalytic ozonation. Catal. Sci. Technol. 2019, 9 (21), 5979-5990.
    15. Sánchez-López, E.; Gomes, D.; Esteruelas, G.; Bonilla, L.; Lopez-Machado, A. L.; Galindo, R.; Cano, A.; Espina, M.; Ettcheto, M.; Camins, A.; Silva, A. M.; Durazzo, A.; Santini, A.; Garcia, M. L.; Souto, E. B., Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. Nanomaterials 2020, 10 (2), 292.
    16. Kohanski, M. A.; Dwyer, D. J.; Collins, J. J. How antibiotics kill bacteria: from targets to networks. Nat. Rev. Microbiol. 2010, 8, 423435.
    17. Fischbach, M. A.; Walsh, C. T., Antibiotics for emerging pathogens. Science 2009, 325, 10891093.
    18. Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A. K. M.; Wertheim, H. F. L., Sumpradit, N.; Vlieghe, E.; Hara, G. L.; Gould, I. M.; Goossens, H.; Greko, C.; So, A. D.; Bigdeli, M.; Tomson, G.; Woodhouse, W.; Ombaka, E.; Peralta, A. Q.; Qamar, F. N.; Mir, F.; Kariuki, S.; Bhutta, Z. A.; Coates, A.; Bergstrom, R.; Wright, G. D.; Brown, E. D.; Cars, O., Antibiotic resistance–the need for global solutions. Lancet Infect. Dis. 2013, 13, 10571098.
    19. Davies, J.; Davies, D., Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417433.
    20. Aslam, B.; Wang, W.; Arshad, M. I.; Khurshid, M.; Muzammil, S.; Rasool, M. H.; Nisar, M. A.; Alvi, R. F.; Aslam, M. A.; Qamar, M. U.; Salamat, M. K. F.; Baloch, Z., Antibiotic resistance: a rundown of a global crisis. Infect. Drug Resist. 2018, 11, 16451658.
    21. Blair, J. M. A.; Webber, M. A.; Baylay, A. J.; Ogbolu, D. O.; Piddock, L. J. V., Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2014, 13, 4251.
    22. Simpkin, V. L.; Renwick, M. J.; Kelly, R.; Mossialos, E., Incentivising innovation in antibiotic drug discovery and development: progress, challenges and next steps. J. Antibiot. 2017, 70, 10871096.
    23. Rudramurthy, G. R.; Swamy, M. K.; Sinniah, U. R.; Ghasemzadeh, A., Nanoparticles: Alternatives against drug–resistant pathogenic microbes. Molecules 2016, 21, 836.
    24. Baptista, P. V.; McCusker, M. P.; Carvalho, A.; Ferreira, D. A.; Mohan, N. M.; Martins, M.; Fernandes, A. R., Nano–strategies to fight multidrug resistant bacteria–“a battle of the titans”. Front. Microbiol. 2018, 9, 1441.
    25. Gupta, A.; Mumtaz, S.; Li, C.–H.; Hussain, I.; Rotello, V. M., Combatting antibiotic–resistant bacteria using nanomaterials. Chem. Soc. Rev. 2019, 48, 415427.
    26. Kumar, M.; Curtis, A.; Hoskins, C., Application of nanoparticle technologies in the combat against anti–microbial resistance. Pharmaceutics 2018, 10, 11.
    27. Zheng, K.; Setyawati, M. I.; Leong, D. T.; Xie, J., Antimicrobial silver nanomaterials. Coord. Chem. Rev. 2018, 357, 117.
    28. Zheng, K.; Setyawati, M. I.; Leong, D. T.; Xie, J., Surface ligand chemistry of gold nanoclusters determines their antimicrobial ability. Chem. Mater. 2018, 30, 2800–2808.
    29. Uyguner Demirel, C. S.; Birben, N. C.; Bekbolet, M., A comprehensive review on the use of second generation TiO2 photocatalysts: microorganism inactivation. Chemosphere 2018, 211, 420448.
    30. Ananth, A.; Dharaneedharan, S.; Heo, M.–S.; Mok, Y. S., Copper oxide nanomaterials: synthesis, characterization and structure–specific antibacterial performance. Chem. Eng. J. 2015, 262, 179188.
    31. Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N. H. M.; Ann, L. C.; Bakhori, S. K. M.; Hasan, H.; Mohamad, D. J. N.–M. L.,. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano Micro Lett. 2015, 7, 219242.
    32. Gold, K.; Slay, B.; Knackstedt, M.; Gaharwar, A. K.; Antimicrobial activity of metal and metal–oxide based nanoparticles. Adv. Therap. 2018, 1, 1700033.
    33. Shaikh, S.; Nazam, N.; Rizvi, S. M. D.; Ahmad, K.; Baig, M. H.; Lee, E. J.; Choi, I.; Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. Int. J. Mol. Sci. 2019, 20, 2468.
    34. Edris, H.; Pouran, M.; Parisa, T.; Hooshyar, H.; John, S.; Amjad, M. K.; Ghulam Md., A review on nano–antimicrobials: metal nanoparticles, methods and mechanisms. Curr. Drug Metab. 2017, 18, 120128.
    35. Lakshminarayanan, R.; Ye, E.; Young, D. J.; Li, Z.; Loh, X. J., Recent advances in the development of antimicrobial nanoparticles for combating resistant pathogens. Adv. Healthcare Mater. 2018, 7, 1701400.
    36. Ganguly, P.; Breen, A.; Pillai, S. C.; Toxicity of nanomaterials: exposure, pathways, assessment, and recent advances. ACS Biomater. Sci. Eng. 2018, 4, 22372275.
    37. Gawande, M. B.; Goswami, A.; Felpin, F.-X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R. S., Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chem. Rev. 2016, 116 (6), 37223811.
    38. Gonzalez, A. C. d. O.; Costa, T. F.; Andrade, Z. d. A.; Medrado, A. R. A. P., Wound healing - A literature review. An Bras Dermatol 2016, 91 (5), 614620.
    39. Negut, I.; Grumezescu, V.; Grumezescu, A. M., Treatment Strategies for Infected Wounds. Molecules 2018, 23 (9), 2392.
    40. Namivandi-Zangeneh, R.; Yang, Y.; Xu, S.; Wong, E. H. H.; Boyer, C., Antibiofilm Platform based on the Combination of Antimicrobial Polymers and Essential Oils. Biomacromolecules 2020, 21 (1), 262-272.
    41. Wang, H.; Da, L.; Yang, L.; Chu, S.; Yang, F.; Yu, S.; Jiang, C. Colorimetric Fluorescent Paper Strip with Smartphone Platform for Quantitative Detection of Cadmium Ions in Real Samples. J. Hazard. Mater. 2020, 392, 122506.
    42. Jin, L.; Meng, Z.; Zhang, Y.; Cai, S.; Zhang, Z.; Li, C.; Shang, L.; Shen, Y. Ultrasmall Pt Nanoclusters as Robust Peroxidase Mimics for Colorimetric Detection of Glucose in Human Serum. ACS Appl. Mater. Interfaces 2017, 9, 10027–10033.Tan, L.-Y.; Sin, L. T.; Bee, S.-T.; Ratnam, C. T.; Woo, K.-K.; Tee, T.-T.; Rahmat, A. R., A review of antimicrobial fabric containing nanostructures metal-based compound. J. Vinyl Addit. Technol. 2019, 25 (1), 3-27.

    Chapter 2

    1. Kohanski, M. A.; Dwyer, D. J.; Collins, J. J., How antibiotics kill bacteria: from targets to networks. Nat. Rev. Microbiol. 2010, 8, 423435.
    2. Fischbach, M. A.; Walsh, C. T., Antibiotics for emerging pathogens. Science 2009, 325, 10891093.
    3. Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A. K. M.; Wertheim, H. F. L., Sumpradit, N.; Vlieghe, E.; Hara, G. L.; Gould, I. M.; Goossens, H.; Greko, C.; So, A. D.; Bigdeli, M.; Tomson, G.; Woodhouse, W.; Ombaka, E.; Peralta, A. Q.; Qamar, F. N.; Mir, F.; Kariuki, S.; Bhutta, Z. A.; Coates, A.; Bergstrom, R.; Wright, G. D.; Brown, E. D.; Cars, O., Antibiotic resistance–the need for global solutions. Lancet Infect. Dis. 2013, 13, 10571098.
    4. Davies, J.; Davies, D., Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417433.
    5. Aslam, B.; Wang, W.; Arshad, M. I.; Khurshid, M.; Muzammil, S.; Rasool, M. H.; Nisar, M. A.; Alvi, R. F.; Aslam, M. A.; Qamar, M. U.; Salamat, M. K. F.; Baloch, Z., Antibiotic resistance: a rundown of a global crisis. Infect. Drug Resist. 2018, 11, 16451658.
    6. Blair, J. M. A.; Webber, M. A.; Baylay, A. J.; Ogbolu, D. O.; Piddock, L. J. V., Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2014, 13, 4251.
    7. Simpkin, V. L.; Renwick, M. J.; Kelly, R.; Mossialos, E., Incentivising innovation in antibiotic drug discovery and development: progress, challenges and next steps. J. Antibiot. 2017, 70, 10871096.
    8. Rudramurthy, G. R.; Swamy, M. K.; Sinniah, U. R.; Ghasemzadeh, A., Nanoparticles: Alternatives against drug–resistant pathogenic microbes. Molecules 2016, 21, 836.
    9. Baptista, P. V.; McCusker, M. P.; Carvalho, A.; Ferreira, D. A.; Mohan, N. M.; Martins, M.; Fernandes, A. R., Nano–strategies to fight multidrug resistant bacteria–“a battle of the titans”. Front. Microbiol. 2018, 9, 1441.
    10. Gupta, A.; Mumtaz, S.; Li, C.–H.; Hussain, I.; Rotello, V. M., Combatting antibiotic–resistant bacteria using nanomaterials. Chem. Soc. Rev. 2019, 48, 415427.
    11. Kumar, M.; Curtis, A.; Hoskins, C., Application of nanoparticle technologies in the combat against anti–microbial resistance. Pharmaceutics 2018, 10, 11.
    12. Zheng, K.; Setyawati, M. I.; Leong, D. T.; Xie, J., Antimicrobial silver nanomaterials. Coord. Chem. Rev. 2018, 357, 117.
    13. Zheng, K.; Setyawati, M. I.; Leong, D. T.; Xie, J., Surface ligand chemistry of gold nanoclusters determines their antimicrobial ability. Chem. Mater. 2018, 30, 2800–2808.
    14. Uyguner Demirel, C. S.; Birben, N. C.; Bekbolet, M., A comprehensive review on the use of second generation TiO2 photocatalysts: microorganism inactivation. Chemosphere 2018, 211, 420448.
    15. Ananth, A.; Dharaneedharan, S.; Heo, M.–S.; Mok, Y. S., Copper oxide nanomaterials: synthesis, characterization and structure–specific antibacterial performance. Chem. Eng. J. 2015, 262, 179188.
    16. Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N. H. M.; Ann, L. C.; Bakhori, S. K. M.; Hasan, H.; Mohamad, D. J. N.–M. L.,. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano Micro Lett. 2015, 7, 219242.
    17. Gold, K.; Slay, B.; Knackstedt, M.; Gaharwar, A. K.; Antimicrobial activity of metal and metal–oxide based nanoparticles. Adv. Therap. 2018, 1, 1700033.
    18. Shaikh, S.; Nazam, N.; Rizvi, S. M. D.; Ahmad, K.; Baig, M. H.; Lee, E. J.; Choi, I.; Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. Int. J. Mol. Sci. 2019, 20, 2468.
    19. Edris, H.; Pouran, M.; Parisa, T.; Hooshyar, H.; John, S.; Amjad, M. K.; Ghulam Md., A review on nano–antimicrobials: metal nanoparticles, methods and mechanisms. Curr. Drug Metab. 2017, 18, 120128.
    20. Lakshminarayanan, R.; Ye, E.; Young, D. J.; Li, Z.; Loh, X. J., Recent advances in the development of antimicrobial nanoparticles for combating resistant pathogens. Adv. Healthcare Mater. 2018, 7, 1701400.
    21. Ganguly, P.; Breen, A.; Pillai, S. C.; Toxicity of nanomaterials: exposure, pathways, assessment, and recent advances. ACS Biomater. Sci. Eng. 2018, 4, 22372275.
    22. Loza, K.; Diendorf, J.; Sengstock, C.; Ruiz–Gonzalez, L.; Gonzalez–Calbet, J. M.; Vallet–Regi, M.; Köller, M.; Epple, M., The dissolution and biological effects of silver nanoparticles in biological media. J. Mater. Chem. B 2014, 2, 16341643.
    23. Higaki, T.; Li, Y.; Zhao, S.; Li, Q.; Li, S.; Du, X.–S.; Yang, S.; Chai, J.; Jin, R., Atomically tailored gold nanoclusters for catalytic application. Angew. Chem., Int. Ed. 2019, 58, 82918302.
    24. Su, Y.; Xue, T.; Liu, Y.; Qi, J.; Jin, R.; Lin, Z., Luminescent metal nanoclusters for biomedical applications. Nano Res. 2019, 12, 12511265.
    25. Rao, T. U. B.; Nataraju, B.; Pradeep, T., Ag9 quantum cluster through a solid–state route. J. Am. Chem. Soc. 2010, 132, 1630416307.
    26. Kang, X.; Zhu, M., Intra–cluster growth meets inter–cluster assembly: the molecular and supramolecular chemistry of atomically precise nanoclusters. Coord. Chem. Rev. 2019, 394, 138.
    27. Liu, X.; Astruc, D., Atomically precise copper nanoclusters and their applications. Coord. Chem. Rev. 2018, 359, 112126.
    28. New, S. Y.; Lee, S. T.; Su, X. D., DNA–templated silver nanoclusters: structural correlation and fluorescence modulation. Nanoscale 2016, 8, 1772917746.
    29. Shang, L.; Xu, J.; Nienhaus, G. U., Recent advances in synthesizing metal nanocluster–based nanocomposites for application in sensing, imaging and catalysis. Nano Today 2019, 28, 100767.
    30. Zheng, K.; Setyawati, M. I.; Leong, D. T.; Xie, J., Antimicrobial gold nanoclusters. ACS Nano 2017, 11, 69046910.
    31. Eun, H.; Kwon, W. Y.; Kalimuthu, K.; Kim, Y.; Lee, M.; Ahn, J.–O.; Lee, H.; Lee, S. H.; Kim, H. J.; Park, H. G.; Park, K. S., Melamine–promoted formation of bright and stable DNA–silver nanoclusters and their antimicrobial properties. J. Mater. Chem. B 2019, 7, 25122517.
    32. Wang, H.Y.; Hua, X.W.; Wu, F.G.; Li, B., Liu, P.; Gu, N.; Wang, Z.F.; Chen, Z., Synthesis of ultrastable copper sulfide nanoclusters via trapping the reaction intermediate: potential anticancer and antibacterial applications. ACS Appl. Mater. Interfaces 2015, 7, 70827092.
    33. Zheng, K.; Setyawati, M. I.; Lim, T.–P.; Leong, D. T.; Xie, J., Antimicrobial cluster bombs: silver nanoclusters packed with daptomycin. ACS Nano 2016, 10, 79347942.
    34. Xia, J.; Wang, W. Hai, X. E, S.; Shu, Y.; Wang, J., Improvement of antibacterial activity of ccopper nanoclusters for selective inhibition on the growth of gram–positive bacteria. Chin. Chem. Lett. 2019, 30, 421424.
    35. Xie, J.; Zheng, Y.; Ying, J. Y., Protein–directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 2009, 131, 888–889.
    36. Wang, C.; Wang, C.; Xu, L.; Cheng, H.; Lin, Q.; Zhang, C., Protein–directed synthesis of pH–responsive red fluorescent copper nanoclusters and their applications in cellular imaging and catalysis. Nanoscale 2014, 6, 17751781.
    37. Bhunia, S.; Kumar, S.; Purkayastha, P., Application of photoinduced electron transfer with copper nanoclusters toward finding characteristics of protein pockets. ACS Omega 2019, 4, 25232532.
    38. Domenico, P.; Salo, R. J.; Novick, S. G.; Schoch, P. E.; Van Horn, K.; Cunha, B. A.; Enhancement of bismuth antibacterial activity with lipophilic thiol chelators. Antimicrob. Agents Chemother. 1997, 41, 16971703.
    39. Tu, Y.–J.; Njus, D.; Schlegel, H. B., A theoretical study of ascorbic acid oxidation and HOO˙/O2˙− radical scavenging. Org. Biomol. Chem. 2017, 15, 44174431.
    40. Zhong, Y.; Zhu, J.; Wang, Q.; He, Y.; Ge, Y.; Song, C. J. M. A., Copper nanoclusters coated with bovine serum albumin as a regenerable fluorescent probe for copper(II) ion. Microchim. Acta 2015, 182, 909915.
    41. Dixon, J. M.; Egusa, S.; Conformational change–induced fluorescence of bovine serum albumin–gold complexes. J. Am. Chem. Soc. 2008, 140, 22652271.
    42. Basu, K.; Paul, S.; Jana, R.; Datta, A.; Banerjee, A., Red–emitting copper nanoclusters: from bulk–scale synthesis to catalytic reduction. ACS Sustainable Chem. Eng. 2019, 7, 19982007.
    43. Wang, B.; Gui, R.; Jin, H.; He, W.; Wang, Z., Red-Emitting BSA-Stabilized Copper Nanoclusters Acted as a Sensitive Probe for Fluorescence Sensing and Visual Imaging Detection of Rutin. Talanta 2018, 178, 1006-1010.
    44. Zhao, T.; He, X. W.; Li, W. Y.; Zhang, Y. K. Transferrin–directed preparation of red–emitting copper nanoclusters for targeted imaging of transferrin receptor over–expressed cancer cells. J. Mater. Chem. B 2015, 3, 2388–2394.
    45. Ghosh, R., Sahoo, A. K., Ghosh, S. S., Paul, A., Chattopadhyay, A.. Blue–emitting copper nanoclusters synthesized in the presence of lysozyme as candidates for cell labeling. ACS Appl. Mater. Interfaces 2018 6, 38223828.
    46. Sridhar, D. B.; Gupta, R.; Rai, B., Effect of Surface Coverage and Chemistry on Self-Assembly of Monolayer Protected Gold Nanoparticles: A Molecular Dynamics Simulation Study. Phys. Chem. Chem. Phys. 2018, 20, 25883-25891.
    47. Louis-Jeune, C.; Andrade-Navarro, M. A.; Perez-Iratxeta, C., Prediction of Protein
    Secondary Structure From Circular Dichroism Using Theoretically Derived Spectra.
    Proteins Struct. Funct. Bioinf. 2012, 80, 374-381.
    48. Kluz, M.; Nieznańska, H.; Dec, R.; Dzięcielewski, I.; Niżyński, B.; Ścibisz, G.; Puławski, W.; Staszczak, G.; Klein, E.; Smalc-Koziorowska, J.; Dzwolak, W., Revisiting The Conformational State of Albumin Conjugated to Gold Nanoclusters: A Self-Assembly Pathway to Giant Superstructures Unraveled. PloS one 2019, 14, 0218975..
    49. Le Guével, X.; Hötzer, B.; Jung, G.; Hollemeyer, K.; Trouillet, V.; Schneider, M., Formation of Fluorescent Metal (Au, Ag) Nanoclusters Capped in Bovine Serum Albumin Followed by Fluorescence and Spectroscopy. J. Phys. Chem. C 2011, 115, 10955-10963.
    50. Jia, X.; Li, J.; Han, L.; Ren, J.; Yang, X.; Wang, E., DNA-Hosted Copper Nanoclusters for Fluorescent Identification of Single Nucleotide Polymorphisms. ACS Nano 2012, 6, 3311-3317.
    51. Rotaru, A.; Dutta, S.; Jentzsch, E.; Gothelf, K.; Mokhir, A., Selective dsDNA-Templated
    Formation of Copper Nanoparticles in Solution. Angew. Chem., Int. Ed. 2010, 49, 5665
    5667.
    52. Yang, D.; Guo, Z.; Tang, Y.; Miao, P., Poly(thymine)-Templated Selective Formation of
    Copper Nanoparticles for Alkaline Phosphatase Analysis Aided by Alkyne–Azide
    Cycloaddition “Click” Reaction. ACS Appl. Nano Mater. 2018, 1, 168-174.
    53. Tseng, Y.-T.; Cherng, R.; Harroun, S. G.; Yuan, Z.; Lin, T.-Y.; Wu, C.-W.; Chang, H.-T.; Huang, C.-C., Photoassisted Photoluminescence Fine-Tuning of Gold Nanodots Through Free Radical-Mediated Ligand-Assembly. Nanoscale 2016, 8, 9771-9779.
    54. Tseng, Y.-T.; Yuan, Z.; Yang, Y.-Y.; Huang, C.-C.; Chang, H.-T., Photoluminescent Gold Nanodots: Role of The Accessing Ligands. RSC Adv. 2014, 4, 33629-33635.
    55. Chevrier, D. M.; Raich, L.; Rovira, C.; Das, A.; Luo, Z.; Yao, Q.; Chatt, A.; Xie, J.; Jin, R.; Akola, J.; Zhang, P., Molecular-Scale Ligand Effects in Small Gold–Thiolate Nanoclusters. J. Am. Chem. Soc. 2018, 140, 15430-15436.
    56. Dutta, A.; Goswami, U.; Chattopadhyay, A., Probing Cancer Cells Through Intracellular Aggregation-Induced Emission Kinetic Rate of Copper Nanoclusters. ACS Appl. Mater. Interfaces 2018, 10, 19459-19472.
    57. Lin, Y.; Charchar, P.; Christofferson, A. J.; Thomas, M. R.; Todorova, N.; Mazo, M. M.; Chen, Q.; Doutch, J.; Richardson, R.; Yarovsky, I.; Stevens, M. M., Surface Dynamics and Ligand–Core Interactions of Quantum Sized Photoluminescent Gold Nanoclusters. J. Am. Chem. Soc. 2018, 140, 18217-18226.
    58. Yang, T.; Dai, S.; Tan, H.; Zong, Y.; Liu, Y.; Chen, J.; Zhang, K.; Wu, P.; Zhang, S.; Xu, J.; Tian, Y., Mechanism of Photoluminescence in Ag Nanoclusters: Metal-Centered Emission versus Synergistic Effect in Ligand-Centered Emission. J. Phys. Chem. C 2019, 123, 18638-18645.
    59. Ai, L.; Jiang, W.; Liu, Z.; Liu, J.; Gao, Y.; Zou, H.; Wu, Z.; Wang, Z.; Liu, Y.; Zhang, H.; Yang, B., Engineering a Red Emission of Copper Nanocluster Self-Assembly Architectures by Employing Aromatic Thiols as Capping Ligands. Nanoscale 2017, 9, 12618-12627.
    60. Wang, Y.; Im, J.; Soares, J. W.; Steeves, D. M.; Whitten, J. E. Thiol adsorption on and reduction of copper oxide particles and surfaces. Langmuir 2016, 32, 38483857.
    61. Bootharaju, M. S.; Kozlov, S. M.; Cao, Z.; Shkurenko, A.; El-Zohry, A. M.; Mohammed, O. F.; Eddaoudi, M.; Bakr, O. M.; Cavallo, L.; Basset, J.-M., Tailoring the Crystal Structure of Nanoclusters Unveiled High Photoluminescence via Ion Pairing. Chem. Mater. 2018, 30, 2719-2725.
    62. Wang, J.; Lin, X.; Shu, T.; Su, L.; Liang, F.; Zhang, X., Self-Assembly of Metal Nanoclusters for Aggregation-Induced Emission. Int. J. Mol. Sci. 2019, 20, 1891.
    63. Pyo, K.; Thanthirige, V. D.; Kwak, K.; Pandurangan, P.; Ramakrishna, G.; Lee, D., Ultrabright Luminescence from Gold Nanoclusters: Rigidifying the Au(I)–Thiolate Shell. J. Am. Chem. Soc. 2015, 137, 8244-8250.
    64. Chen, Y.; Yang, T.; Pan, H.; Yuan, Y.; Chen, L.; Liu, M.; Zhang, K.; Zhang, S.; Wu, P.; Xu, J., Photoemission Mechanism of Water-Soluble Silver Nanoclusters: Ligand-to-Metal–Metal Charge Transfer vs Strong Coupling between Surface Plasmon and Emitters. J. Am. Chem. Soc. 2014, 136, 1686-1689..
    65. Schultz, C. L.; Gray, J.; Verweij, R. A.; Busquets-Fité, M.; Puntes, V.; Svendsen, C.; Lahive, E.; Matzke, M., Aging Reduces the Toxicity of Pristine but Not Sulphidised Silver Nanoparticles to Soil Bacteria. Environ. Sci., Nano 2018, 5, 2618-2630.
    66. Heuer–Jungemann, A.; Feliu, N.; Bakaimi, I.; Hamaly, M.; Alkilany, A.; Chakraborty, I.; Masood, A.; Casula, M. F.; Kostopoulou, A.; Oh, E.; Susumu, K.; Stewart, M. H.; Medintz, I. L.; Stratakis, E.; Parak, W. J.; Kanaras, A. G. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem. Rev. 2019, 119, 4819–4880.
    67. Shi, M.; Kwon, H. S.; Peng, Z.; Elder, A.; Yang, H., Effects of Surface Chemistry on the Generation of Reactive Oxygen Species by Copper Nanoparticles. ACS Nano 2012, 6, 2157-2164.
    68. Phaniendra, A.; Jestadi, D. B.; Periyasamy, L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian J. Clin. Biochem. 2015, 30, 11–26.
    69. Roginsky, V. A.; Stegmann, H. B. Ascorbyl Radical as Natural Indicator of Oxidative Stress: Quantitative Regularities. Free Radical Biol. Med. 1994, 17, 93103.
    70. Romo, A. I. B.; Dibo, V. S.; Abreu, D. S.; Carepo, M. S. P.; Neira, A. C.; Castillo, I.; Lemus, L.; Nascimento, O. R..; Bernhardt, P. V.; Sousa, E. H. S.; Diógenes, I. C. N. Ascorbyl and hydroxyl radical generation mediated by a copper complex adsorbed on gold. Dalton Trans. 2019, 48, 1412814137.
    71. Van Lehn, R. C.; Alexander-Katz, A., Energy Landscape for the Insertion of Amphiphilic Nanoparticles Into Lipid Membranes: A Computational Study. PLoS one 2019, 14, 0209492.
    72. Gabriel, G. J.; Maegerlein, J. A.; Nelson, C. F.; Dabkowski, J. M.; Eren, T.; Nüsslein, K.; Tew, G. N., Comparison of Facially Amphiphilic Versus Segregated Monomers in the Design of Antibacterial Copolymers. Chemistry 2009, 15, 433-439.
    73. Callewaert, C.; De Maeseneire, E.; Kerckhof, F.-M.; Verliefde, A.; Van de Wiele, T.; Boon, N., Microbial Odor Profile of Polyester and Cotton Clothes after a Fitness Session. Appl. Environ. Microbiol. 2014, 80, 6611-6619.
    74. Nwanya, A. C.; Razanamahandry, L. C.; Bashir, A. K. H.; Ikpo, C. O.; Nwanya, S. C.; Botha, S.; Ntwampe, S. K. O.; Ezema, F. I.; Iwuoha, E. I.; Maaza, M., Industrial Textile Effluent Treatment and Antibacterial Effectiveness of Zea Mays L. Dry Husk Mediated Bio-Synthesized Copper Oxide Nanoparticles. J. Hazard. Mater. 2019, 375, 281-289.
    75. Budama, L.; Çakır, B. A.; Topel, Ö.; Hoda, N., A New Strategy for Producing Antibacterial Textile Surfaces Using Silver Nanoparticles. Chem. Eng. J. 2013, 228, 489-495.
    76. Abramova, A.; Gedanken, A.; Popov, V.; Ooi, E.-H.; Mason, T. J.; Joyce, E. M.; Beddow, J.; Perelshtein, I.; Bayazitov, V., A sonochemical Technology for Coating of Textiles with Antibacterial Nanoparticles and Equipment for Its implementation. Mater.

    Chapter 3

    1. Fischbach, M. A.; Walsh, C. T. Antibiotics for Emerging Pathogens. Science 2009, 325, 1089–1093.
    2. Blair, J. M. A.; Webber, M. A.; Baylay, A. J.; Ogbolu, D. O.; Piddock, L. J. V. Molecular Mechanisms of Antibiotic Resistance. Nat. Rev. Microbiol. 2015, 13, 42–51.
    3. Durão, P.; Balbontín, R.; Gordo, I. Evolutionary Mechanisms Shaping the Maintenance of Antibiotic Resistance. Trends Microbiol. 2018, 26, 677–691.
    4. Kollef, M. H.; Bassetti, M.; Francois, B.; Burnham, J.; Dimopoulos, G.; Garnacho-Montero, J.; Lipman, J.; Luyt, C. E.; Nicolau, D. P.; Postma, M. J.; Torres, A.; Welte, T.; Wunderink, R. G. The Intensive Care Medicine Research Agenda on Multidrug-Resistant Bacteria, Antibiotics, and Stewardship. Intensive Care Med. 2017, 43, 1187–1197.
    5. Ghosh, C.; Sarkar, P.; Issa, R.; Haldar, J. Alternatives to Conventional Antibiotics in the Era of Antimicrobial Resistance. Trends Microbiol. 2019, 27, 323–338.
    6. Anand, A.; Unnikrishnan, B.; Wei, S. C.; Chou, C. P.; Zhang, L. Z.; Huang, C. C. Graphene Oxide and Carbon Dots as Broad-Spectrum Antimicrobial Agents-a Minireview. Nanoscale Horiz. 2019, 4, 117–137.
    7. Gupta, A.; Mumtaz, S.; Li, C. H.; Hussain, I.; Rotello, V. M. Combatting Antibiotic-Resistant Bacteria Using Nanomaterials. Chem. Soc. Rev. 2019, 48, 415–427
    8. Barman, S. R.; Nain, A.; Jain, S.; Punjabi, N.; Mukherji, S.; Satija, J. Dendrimer as a Multifunctional Capping Agent for Metal Nanoparticles for use in Bioimaging, Drug Delivery and Sensor Applications. J. Mater. Chem. B 2018, 6, 2368-2384.
    9. Azizi-Lalabadi, M.; Hashemi, H.; Feng, J.; Jafari, S. M. Carbon Nanomaterials against Pathogens; the Antimicrobial Activity of Carbon Nanotubes, Graphene/Graphene Oxide, Fullerenes, and Their Nanocomposites. Adv. Colloid Interface Sci. 2020, 284, 102250.
    10. Li, Y.; Zhen, J.; Tian, Q.; Shen, C.; Zhang, L.; Yang, K.; Shang, L. One Step Synthesis of Positively Charged Gold Nanoclusters as Effective Antimicrobial Nanoagents Against Multidrug-Resistant Bacteria and Biofilms. J. Colloid Interface Sci. 2020, 569, 234–243.
    11. Tan, L.; Li, J.; Liu, X.; Cui, Z.; Yang, X.; Zhu, S.; Li, Z.; Yuan, X.; Zheng, Y.; Yeung, K. W. K. Rapid Biofilm Eradication on Bone Implants Using Red Phosphorus and Near‐infrared Light. Adv. Mater. 2018, 30, 1801808.
    12. Xiu, Z. M.; Ma, J.; Alvarez, P. J. J. Differential Effect of Common Ligands and Molecular Oxygen on Antimicrobial Activity of Silver Nanoparticles versus Silver Ions. Environ. Sci. Technol. 2011, 45, 9003–9008.
    13. Akhil, K.; Jayakumar, J.; Gayathri, G.; Khan, S. S. Effect of Various Capping Agents on Photocatalytic, Antibacterial and Antibiofilm Activities of ZnO Nanoparticles. J. Photochem. Photobiol. B Biol. 2016, 160, 32–42.
    14. Cai, R.; Chen, C. The Crown and the Scepter: Roles of the Protein Corona in Nanomedicine. Adv. Mater. 2019, 31, 1805740.
    15. Liang, P.; Huang, X.; Wang, Y.; Chen, D.; Ou, C.; Zhang, Q.; Shao, J.; Huang, W.; Dong, X. Tumor-Microenvironment-Responsive Nanoconjugate for Synergistic Antivascular Activity and Phototherapy. ACS Nano 2018, 12, 11446–11457.
    16. Li, J.; Liu, X.; Tan, L.; Cui, Z.; Yang, X.; Liang, Y.; Li, Z.; Zhu, S.; Zheng, Y.; Yeung, K. W. K. Zinc-Doped Prussian Blue Enhances Photothermal Clearance of Staphylococcus Aureus and Promotes Tissue Repair in Infected Wounds. Nat. Commun. 2019, 10, 4490.
    17. Li, M.; Li, L.; Su, K.; Liu, X.; Zhang, T.; Liang, Y.; Jing, D.; Yang, X.; Zheng, D.; Cui, Z. Highly Effective and Noninvasive Near‐infrared Eradication of a Staphylococcus Aureus Biofilm on Implants by a Photoresponsive Coating within 20 Min. Adv. Sci. 2019, 6, 1900599.
    18. Huang, B.; Tan, L.; Liu, X.; Li, J.; Wu, S. A Facile Fabrication of Novel Stuff with Antibacterial Property and Osteogenic Promotion Utilizing Red Phosphorus and Near-Infrared Light. Bioact. Mater. 2019, 4, 17–21.
    19. Han, D.; Han, Y.; Li, J.; Liu, X.; Yeung, K. W. K.; Zheng, Y.; Cui, Z.; Yang, X.; Liang, Y.; Li, Z. Enhanced Photocatalytic Activity and Photothermal Effects of Cu-Doped Metal-Organic Frameworks for Rapid Treatment of Bacteria-Infected Wounds. Appl. Catal. B Environ. 2020, 261, 118248.
    20. Bao, H.; Zhang, H.; Zhou, L.; Fu, H.; Liu, G.; Li, Y.; Cai, W. Large Area α-Cu2S Particle-Stacked Nanorod Arrays by Laser Ablation in Liquid and Their Strong Structurally Enhanced and Stable Visible Photoelectric Performances. ACS Appl. Mater. Interfaces 2018, 10, 19027–19036.
    21. Lum, Y.; Ager, J. W. Stability of Residual Oxides in Oxide-Derived Copper Catalysts for Electrochemical CO2 Reduction Investigated with 18O Labeling. Angew. Chem. Int. Ed. 2018, 57, 551–554.
    22. Li, N.; Sun, Q.; Yu, Z.; Gao, X.; Pan, W.; Wan, X.; Tang, B. Nuclear-Targeted Photothermal Therapy Prevents Cancer Recurrence with Near-Infrared Triggered Copper Sulfide Nanoparticles. ACS Nano 2018, 12, 5197–5206.
    23. Liu, L.; Matsushita, T.; Concepción, P.; Leyva-Pérez, A.; Corma, A. Facile Synthesis of Surface-Clean Monodispersed CuOx Nanoparticles and Their Catalytic Properties for Oxidative Coupling of Alkynes. ACS Catal. 2016, 6, 2211–2221.
    24. Xi, J.; Wei, G.; An, L.; Xu, Z.; Xu, Z.; Fan, L.; Gao, L. Copper/Carbon Hybrid Nanozyme: Tuning Catalytic Activity by the Copper State for Antibacterial Therapy. Nano Lett. 2019, 19, 7645–7654.
    25. Karim, M. N.; Singh, M.; Weerathunge, P.; Bian, P.; Zheng, R.; Dekiwadia, C.; Ahmed, T.; Walia, S.; Della Gaspera, E.; Singh, S.; Ramanathan, R.; Bansal, V. Visible-Light-Triggered Reactive-Oxygen-Species-Mediated Antibacterial Activity of Peroxidase-Mimic CuO Nanorods. ACS Appl. Nano Mater. 2018, 1, 1694–1704.
    26. Chen, L.; Zhou, L.; Wang, C.; Han, Y.; Lu, Y.; Liu, J.; Hu, X.; Yao, T.; Lin, Y.; Liang, S.; Shi, S.; Dong, C. Tumor-Targeted Drug and CpG Delivery System for Phototherapy and Docetaxel-Enhanced Immunotherapy with Polarization toward M1-Type Macrophages on Triple Negative Breast Cancers. Adv. Mater. 2019, 31, 1904997.
    27. Meng, Z.; Chao, Y.; Zhou, X.; Liang, C.; Liu, J.; Zhang, R.; Cheng, L.; Yang, K.; Pan, W.; Zhu, M.; Liu, Z. Near-Infrared-Triggered in Situ Gelation System for Repeatedly Enhanced Photothermal Brachytherapy with a Single Dose. ACS Nano 2018, 12, 9412–9422.
    28. Tian, Q.; Jiang, F.; Zou, R.; Liu, Q.; Chen, Z.; Zhu, M.; Yang, S.; Wang, J.; Wang, J.; Hu, J. Hydrophilic Cu9S5 Nanocrystals: A Photothermal Agent with a 25.7% Heat Conversion Efficiency for Photothermal Ablation of Cancer Cells in Vivo. ACS Nano 2011, 5, 9761–9771.
    29. Marin, R.; Skripka, A.; Besteiro, L. V.; Benayas, A.; Wang, Z.; Govorov, A. O.; Canton, P.; Vetrone, F. Highly Efficient Copper Sulfide-Based Near-Infrared Photothermal Agents: Exploring the Limits of Macroscopic Heat Conversion. Small 2018, 14, 1–9.
    30. Lin, L. Sen; Huang, T.; Song, J.; Ou, X. Y.; Wang, Z.; Deng, H.; Tian, R.; Liu, Y.; Wang, J. F.; Liu, Y.; Yu, G.; Zhou, Z.; Wang, S.; Niu, G.; Yang, H. H.; Chen, X. Synthesis of Copper Peroxide Nanodots for H2O2 Self-Supplying Chemodynamic Therapy. J. Am. Chem. Soc. 2019, 141, 9937–9945.
    31. Elimelech, O.; Liu, J.; Plonka, A. M.; Frenkel, A. I.; Banin, U. Size Dependence of Doping by a Vacancy Formation Reaction in Copper Sulfide Nanocrystals. Angew. Chem. Int. Ed. 2017, 56, 10335–10340.
    32. Ren, K.; Yin, P.; Zhou, Y.; Cao, X.; Dong, C.; Cui, L.; Liu, H.; Du, X. Localized Defects on Copper Sulfide Surface for Enhanced Plasmon Resonance and Water Splitting. Small 2017, 13, 1700867.
    33. Liu, X.; Wang, X.; Zhou, B.; Law, W. C.; Cartwright, A. N.; Swihart, M. T. Size-Controlled Synthesis of Cu2-XE (E = S, Se) Nanocrystals with Strong Tunable Near-Infrared Localized Surface Plasmon Resonance and High Conductivity in Thin Films. Adv. Funct. Mater. 2013, 23, 1256–1264.
    34. Fu, F.; Shen, H.; Sun, X.; Xue, W.; Shoneye, A.; Ma, J.; Luo, L.; Wang, D.; Wang, J.; Tang, J. Synergistic Effect of Surface Oxygen Vacancies and Interfacial Charge Transfer on Fe(III)/Bi2MoO6 for Efficient Photocatalysis. Appl. Catal. B Environ. 2019, 247, 150–162.
    35. Liu, Y.; Zhang, H.; Behara, P. K.; Wang, X.; Zhu, D.; Ding, S.; Ganesh, S. P.; Dupuis, M.; Wu, G.; Swihart, M. T. Synthesis and Anisotropic Electrocatalytic Activity of Covellite Nanoplatelets with Fixed Thickness and Tunable Diameter. ACS Appl. Mater. Interfaces 2018, 10, 42417–42426.
    36. Xie, Y.; Riedinger, A.; Prato, M.; Casu, A.; Genovese, A.; Guardia, P.; Sottini, S.; Sangregorio, C.; Miszta, K.; Ghosh, S.; Pellegrino, T.; Manna, L. Copper Sulfide Nanocrystals with Tunable Composition by Reduction of Covellite Nanocrystals with Cu+ Ions. J. Am. Chem. Soc. 2013, 135, 17630–17637.
    37. Ng, Z. Q. C.; Rath, A.; Chua, S. T.; Okano, S.; Wee, A. T. S.; Pennycook, S. J.; Okano, K.; Chua, D. H. C. Energy-Efficient Stacks - Covellite (CuS) on Polyethylene Terephthalate Film: A Sustainable Solution to Heat Management. J. Phys. Chem. C 2020, 124, 3314–3321.
    38. Chen, W.; Xie, Y.; Hu, C.; Zeng, T.; Jiang, H.; Qiao, F.; Gu, J.; Dong, X.; Zhao, X. Room Temperature Synthesis of Aqueous Soluble Covellite CuS Nanocrystals with High Photothermal Conversion. CrystEngComm 2018, 20, 4283–4290.
    39. Liang, W.; Whangbo, M. H. Conductivity Anisotropy and Structural Phase Transition in Covellite CuS. Solid State Commun. 1993, 85, 405–408.
    40. Xie, Y.; Carbone, L.; Nobile, C.; Grillo, V.; D’Agostino, S.; Della Sala, F.; Giannini, C.; Altamura, D.; Oelsner, C.; Kryschi, C.; Cozzoli, P. D. Metallic-like Stoichiometric Copper Sulfide Nanocrystals: Phase- and Shape-Selective Synthesis, Near-Infrared Surface Plasmon Resonance Properties, and Their Modeling. ACS Nano 2013, 7, 7352–7369.
    41. Arora, S.; Kabra, K.; Joshi, K. B.; Sharma, B. K.; Sharma, G. Structural, Elastic, Thermodynamic and Electronic Properties of Covellite, CuS. Phys. B Condens. Matter 2020, 582, 311142.
    42. Arabi, S. H.; Aghelnejad, B.; Schwieger, C.; Meister, A.; Kerth, A.; Hinderberger, D. Serum Albumin Hydrogels in Broad pH and Temperature Ranges: Characterization of Their Self-Assembled Structures and Nanoscopic and Macroscopic Properties. Biomater. Sci. 2018, 6, 478–492.
    43. Ahmad, B.; Kamal, M. Z.; Khan, R. H. Alkali-Induced Conformational Transition in Different Domains of Bovine Serum Albumin. Protein Pept. Lett. 2004, 11, 307–315.
    44. Louis-Jeune, C.; Andrade-Navarro, M. A.; Perez-Iratxeta, C. Prediction of Protein Secondary Structure from Circular Dichroism Using Theoretically Derived Spectra. Proteins Struct. Funct. Bioinforma. 2012, 80, 374–381.
    45. Peters, T.; Blumenstock, F. A. Copper-Binding Properties of Bovine Serum Albumin and Its Amino-Terminal Peptide Fragment. J. Biol. Chem. 1967, 242, 1574–1578.
    46. Sheng, J.; Wang, L.; Han, Y.; Chen, W.; Liu, H.; Zhang, M.; Deng,L.; Liu, Y. N. Dual Roles of Protein as a Template and a Sulfur Provider: A General Approach to Metal Sulfides for Efficient Photothermal Therapy of Cancer. Small 2018, 14, 1702529.
    47. Debski, D.; Smulik, R.; Zielonka, J.; Michałowski, B.; Jakubowska, M.; Debowska, K.; Adamus, J.; Marcinek, A.; Kalyanaraman, B.; Sikora, A. Mechanism of Oxidative Conversion of Amplex® Red to Resorufin: Pulse Radiolysis and Enzymatic Studies. Free Radic. Biol. Med. 2016, 95, 323–332.
    48. Lee, J. K.; Walker, K. L.; Han, H. S.; Kang, J; Prinz, F. B.; Waymouth, R. M.; Nam, H. G.; Zare, R. N. Spontaneous Generation of Hydrogen Peroxide from Aqueous Microdroplets. Proc. Natl. Acad. Sci. 2019, 116, 19294–19298.
    49. Liu, G.; Liu, H.; Xu, H.; Zhu, L.; Su, C.; Gu, C.; Li, L. Enhanced Peroxidase-like Activity of Fe3O4-Sodium Lignosulfonate Loaded Copper Peroxide Composites for Colorimetric Detection of H2O2 and Glutathione. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 239, 118544.
    50. Mascaretti, L.; Dutta, A.; Kment, Š.; Shalaev, V. M.; Boltasseva, A.; Zbořil, R.; Naldoni, A. Plasmon-Enhanced Photoelectrochemical Water Splitting for Efficient Renewable Energy Storage. Adv. Mater. 2019, 31, 1805513.
    51. Chen, M.; He, Y.; Huang, J.; Zhu, J. Investigation into Au Nanofluids for Solar Photothermal Conversion. Int. J. Heat Mass Transf. 2017, 108, 1894–1900.
    52. Yan, C.; Tian, Q.; Yang, S. Recent Advances in the Rational Design of Copper Chalcogenide to Enhance the Photothermal Conversion Efficiency for the Photothermal Ablation of Cancer Cells. RSC Adv. 2017, 7, 37887–37897.
    53. Huang, J.; Zhou, J.; Zhuang, J.; Gao, H.; Huang, D.; Wang, L.; Wu, W.; Li, Q.; Yang, D. P.; Han, M. Y. Strong Near-Infrared Absorbing and Biocompatible CuS Nanoparticles for Rapid and Efficient Photothermal Ablation of Gram-Positive and -Negative Bacteria. ACS Appl. Mater. Interfaces 2017, 9, 36606–36614.
    54. Hsu, C. L.; Li, Y. J.; Jian, H. J.; Harroun, S. G.; Wei, S. C.; Ravindranath, R.; Lai, J. Y.; Huang, C. C.; Chang, H. T. Green Synthesis of Catalytic Gold/Bismuth Oxyiodide Nanocomposites with Oxygen Vacancies for Treatment of Bacterial Infections. Nanoscale 2018, 10, 11808–11819.
    55. Wang, Y.; Li, Z.; Hu, Y.; Liu, J.; Guo, M.; Wei, H.; Zheng, S.; Jiang, T.; Sun, X.; Ma, Z.; Sun, Y.; Besenbacher, F.; Chen, C.; Yu, M. Photothermal Conversion-Coordinated Fenton-like and Photocatalytic Reactions of Cu2-XSe-Au Janus Nanoparticles for Tri-Combination Antitumor Therapy. Biomaterials 2020, 255, 120167.
    56. Zhu, S.; Li, X.; Kang, J.; Duan, X.; Wang, S. Persulfate Activation on Crystallographic Manganese Oxides: Mechanism of Singlet Oxygen Evolution for Nonradical Selective Degradation of Aqueous Contaminants. Environ. Sci. Technol. 2019, 53, 307–315.
    57. Aubry, J. M.; Cazin, B. Chemical Sources of Singlet Oxygen. 2. Quantitative Generation of Singlet Oxygen from Hydrogen Peroxide Disproportionation Catalyzed by Molybdate Ions. Inorg. Chem. 1988, 27, 2013–2014.
    58. Li, H.; Qin, F.; Yang, Z.; Cui, X.; Wang, J.; Zhang, L. New Reaction Pathway Induced by Plasmon for Selective Benzyl Alcohol Oxidation on BiOCl Possessing Oxygen Vacancies. J. Am. Chem. Soc. 2017, 139, 3513–3521.
    59. Liu, N.; Zhu, M.; Niu, N.; Ren, J.; Yang, N.; Yu, C. An Aza-Bodipy Probe Decorated Mesoporous Black TiO2 Nanoplatform for the Highly Efficient Synergistic Phototherapy. ACS Appl. Mater. Interfaces 2020, 37, 41071–41078.
    60. Li, J. J.; Zhang, M.; Weng, B.; Chen, X.; Chen, J.; Jia, H. P. Oxygen Vacancies Mediated Charge Separation and Collection in Pt/WO3 Nanosheets for Enhanced Photocatalytic Performance. Appl. Surf. Sci. 2020, 507, 145133.
    61. Li, L.; Qin, Z.; Ries, L.; Hong, S.; Michel, T.; Yang, J.; Salameh, C.; Bechelany, M.; Miele, P.; Kaplan, D.; Chhowalla, M.; Voiry, D. Role of Sulfur Vacancies and Undercoordinated Mo Regions in MoS2 Nanosheets toward the Evolution of Hydrogen. ACS Nano 2019, 13, 6824–6834.
    62. Yang, C.; Qin, J.; Rajendran, S.; Zhang, X.; Liu, R. WS2 and C-TiO2 Nanorods Acting as Effective Charge Separators on g-C3N4 to Boost Visible-Light Activated Hydrogen Production from Seawater. ChemSusChem 2018, 11, 4077–4085.
    63. Wang, L.; Sha, Y.; Wu, D.; Wei, Q.; Chen, D.; Yang, S.; Jia, F.; Yuan, Q.; Han, X.; Wang, J. Surfactant Induces ROS-Mediated Cell Membrane Permeabilization for the Enhancement of Mannatide Production. Process Biochem. 2020, 91, 172–180.
    64. Rastogi, R. P.; Singh, S. P.; Häder, D. P.; Sinha, R. P. Detection of Reactive Oxygen Species (ROS) by the Oxidant-Sensing Probe 2’,7’-Dichlorodihydrofluorescein Diacetate in the Cyanobacterium Anabaena Variabilis PCC 7937. Biochem. Biophys. Res. Commun. 2010, 397, 603–607.
    65. Nain, A.; Tseng, Y. T.; Wei, S. C.; Periasamy, A. P.; Huang, C. C.; Tseng, F. G.; Chang, H. T. Capping 1,3-Propanedithiol to Boost the Antibacterial Activity of Protein-Templated Copper Nanoclusters. J. Hazard. Mater. 2020, 389, 121821.
    66. Leong, H. N.; Kurup, A.; Tan, M. Y.; Kwa, A. L. H.; Liau, K. H.; Wilcox, M. H. Management of Complicated Skin and Soft Tissue Infections with a Special Focus on the Role of Newer Antibiotics. Infect. Drug Resist. 2018, 11, 1959–1974.
    67. Percival, S. L.; Emanuel, C.; Cutting, K. F.; Williams, D. W. Microbiology of the Skin and the Role of Biofilms in Infection. Int. Wound J. 2012, 9, 14–32.

    Chapter 4

    1. Blair, J. M. A.; Webber, M. A.; Baylay, A. J.; Ogbolu, D. O.; Piddock, L. J. V. Molecular Mechanisms of Antibiotic Resistance. Nat. Rev. Microbiol. 2015, 13 (1), 42–51.
    2. Fischbach, M. A.; Walsh, C. T. Antibiotics for Emerging Pathogens. Science 2009, 325 (5944), 1089–1093.
    3. Antimicrobial Resistance: Global Report on Surveillance. WHO publications 2014, ISBN: 978 92 4 156474 8.
    4. Durão, P.; Balbontín, R.; Gordo, I. Evolutionary Mechanisms Shaping the Maintenance of Antibiotic Resistance. Trends Microbiol. 2018, 26 (8), 677–691.
    5. Kollef, M. H.; Bassetti, M.; Francois, B.; Burnham, J.; Dimopoulos, G.; Garnacho, M. J.; Lipman, J.; Luyt, C. E.; Nicolau, D. P.; Postma, M. J.; Torres, A.; Welte, T.; Wunderink, R. G. The Intensive Care Medicine Research Agenda on Multidrug-Resistant Bacteria, Antibiotics, and Stewardship. Intensive Care Med. 2017, 43 (9), 1187–1197.
    6. Gupta, A.; Mumtaz, S.; Li, C.-H.; Hussain, I.; Rotello, V. M. Combatting Antibiotic-Resistant Bacteria Using Nanomaterials. Chem. Soc. Rev. 2019, 48 (2), 415–427.
    7. Anand, A.; Unnikrishnan, B.; Wei, S. C.; Chou, C. P.; Zhang, L. Z.; Huang, C. C. Graphene Oxide and Carbon Dots as Broad-Spectrum Antimicrobial Agents-a Minireview. Nanoscale Horiz. 2019, 4 (1), 117–137.
    8. Zheng, K.; Xie, J. Composition-Dependent Antimicrobial Ability of Full-Spectrum Aux Ag25–x Alloy Nanoclusters. ACS Nano 2020, 14 (9), 11533–11541.
    9. Tan, L.; Li, J.; Liu, X.; Cui, Z.; Yang, X.; Zhu, S.; Li, Z.; Yuan, X.; Zheng, Y.; Yeung, K. W. K. Rapid Biofilm Eradication on Bone Implants Using Red Phosphorus and Near‐infrared Light. Adv. Mater. 2018, 30 (31), 1801808.
    10. Xiu, Z. M.; Ma, J.; Alvarez, P. J. J. Differential Effect of Common Ligands and Molecular Oxygen on Antimicrobial Activity of Silver Nanoparticles versus Silver Ions. Environ. Sci. Technol. 2011, 45 (20), 9003–9008.
    11. Cai, R.; Chen, C. The Crown and the Scepter: Roles of the Protein Corona in Nanomedicine. Adv. Mater. 2019, 31 (45), 1–13.
    12. Akhil, K.; Jayakumar, J.; Gayathri, G.; Khan, S. S. Effect of Various Capping Agents on Photocatalytic, Antibacterial and Antibiofilm Activities of ZnO Nanoparticles. J. Photochem. Photobiol. B Biol. 2016, 160, 32–42.
    13. Qing, G.; Zhao, X.; Gong, N.; Chen, J.; Li, X.; Gan, Y.; Wang, Y.; Zhang, Z.; Zhang, Y.; Guo, W.; Luo, Y.; Liang, X. J. Thermo-Responsive Triple-Function Nanotransporter for Efficient Chemo-Photothermal Therapy of Multidrug-Resistant Bacterial Infection. Nat. Commun. 2019, 4, 4336.
    14. Li, J.; Liu, X.; Tan, L.; Cui, Z.; Yang, X.; Liang, Y.; Li, Z.; Zhu, S.; Zheng, Y.; Yeung, K. W. K. Zinc-Doped Prussian Blue Enhances Photothermal Clearance of Staphylococcus Aureus and Promotes Tissue Repair in Infected Wounds. Nat. Commun. 2019, 10 (1), 1–15.
    15. Huang, B.; Tan, L.; Liu, X.; Li, J.; Wu, S. A Facile Fabrication of Novel Stuff with Antibacterial Property and Osteogenic Promotion Utilizing Red Phosphorus and Near-Infrared Light. Bioact. Mater. 2019, 4, 17–21.
    16. Li, M.; Li, L.; Su, K.; Liu, X.; Zhang, T.; Liang, Y.; Jing, D.; Yang, X.; Zheng, D.; Cui, Z. Highly Effective and Noninvasive Near‐infrared Eradication of a Staphylococcus Aureus Biofilm on Implants by a Photoresponsive Coating within 20 Min. Adv. Sci. 2019, 6 (17), 1900599.
    17. Deng, X.; Li, K.; Cai, X.; Liu, B.; Wei, Y.; Deng, K.; Xie, Z.; Wu, Z.; Ma, P.; Hou, Z.; Cheng, Z.; Lin, J. A Hollow-Structured CuS@Cu2S@Au Nanohybrid: Synergistically Enhanced Photothermal Efficiency and Photoswitchable Targeting Effect for Cancer Theranostics. Adv. Mater. 2017, 29 (36), 1–9.
    18. Li, N.; Sun, Q.; Yu, Z.; Gao, X.; Pan, W.; Wan, X.; Tang, B. Nuclear-Targeted Photothermal Therapy Prevents Cancer Recurrence with Near-Infrared Triggered Copper Sulfide Nanoparticles. ACS Nano 2018, 12 (6), 5197–5206.
    19. Wang, X.; Zhang, C.; Du, J.; Dong, X.; Jian, S.; Yan, L.; Gu, Z.; Zhao, Y. Enhanced Generation of Non-Oxygen Dependent Free Radicals by Schottky-Type Heterostructures of Au-Bi2S3 Nanoparticles via X-Ray-Induced Catalytic Reaction for Radiosensitization. ACS Nano 2019, 13 (5), 5947–5958.
    20. Meng, Z.; Chao, Y.; Zhou, X.; Liang, C.; Liu, J.; Zhang, R.; Cheng, L.; Yang, K.; Pan, W.; Zhu, M.; Liu, Z. Near-Infrared-Triggered in Situ Gelation System for Repeatedly Enhanced Photothermal Brachytherapy with a Single Dose. ACS Nano 2018, 12 (9), 9412–9422.
    21. Marin, R.; Skripka, A.; Besteiro, L. V.; Benayas, A.; Wang, Z.; Govorov, A. O.; Canton, P.; Vetrone, F. Highly Efficient Copper Sulfide-Based Near-Infrared Photothermal Agents: Exploring the Limits of Macroscopic Heat Conversion. Small 2018, 14 (49), 1–9.
    22. Karim, M. N.; Singh, M.; Weerathunge, P.; Bian, P.; Zheng, R.; Dekiwadia, C.; Ahmed, T.; Walia, S.; Della Gaspera, E.; Singh, S.; Ramanathan, R.; Bansal, V. Visible-Light-Triggered Reactive-Oxygen-Species-Mediated Antibacterial Activity of Peroxidase-Mimic CuO Nanorods. ACS Appl. Nano Mater. 2018, 1 (4), 1694–1704.
    23. Xi, J.; Wei, G.; An, L.; Xu, Z.; Xu, Z.; Fan, L.; Gao, L. Copper/Carbon Hybrid Nanozyme: Tuning Catalytic Activity by the Copper State for Antibacterial Therapy. Nano Lett. 2019, 19 (11), 7645–7654.
    24. Li, Y.; Liu, X.; Tan, L.; Cui, Z.; Jing, D.; Yang, X.; Liang, Y.; Li, Z.; Zhu, S.; Zheng, Y.; Yeung, K. W. Eradicating Multidrug‐Resistant Bacteria Rapidly Using a Multi Functional g‐C3N4@Bi2S3 Nanorod Heterojunction with or without Antibiotics. Adv. Func. Mater. 2019, 29 (20), 1900946.
    25. Hsu, C.-L.; Li, Y.-J.; Jian, H.-J.; Harroun, S. G.; Wei, S.-C.; Ravindranath, R.; Lai, J.-Y.; Huang, C.-C.; Chang, H.-T. Green Synthesis of Catalytic Gold/Bismuth Oxyiodide Nanocomposites with Oxygen Vacancies for Treatment of Bacterial Infections. Nanoscale 2018, 10 (25), 11808–11819.
    26. Ren, K.; Yin, P.; Zhou, Y.; Cao, X.; Dong, C.; Cui, L.; Liu, H.; Du, X. Localized Defects on Copper Sulfide Surface for Enhanced Plasmon Resonance and Water Splitting. Small 2017, 13 (36), 1–7.
    27. Fu, F.; Shen, H.; Sun, X.; Xue, W.; Shoneye, A.; Ma, J.; Luo, L.; Wang, D.; Wang, J.; Tang, J. Synergistic Effect of Surface Oxygen Vacancies and Interfacial Charge Transfer on Fe(III)/Bi2MoO6 for Efficient Photocatalysis. Appl. Catal. B Environ. 2019, 247, 150–162.
    28. Daub, N. A.; Aziz, F.; Aziz, M.; Jaafar, J.; Salleh, W. N. W.; Yusof, N.; Ismail, A. F. A Mini Review on Parameters Affecting the Semiconducting Oxide Photocatalytic Microbial Disinfection. Water, Air, Soil Pollut. 2020, 231 (9), 1–13.
    29. Liu, C. G.; Tang, H. X.; Zheng, X.; Yang, D. Y.; Zhang, Y.; Zhang, J. T.; Kankala, R. K.; Wang, S. Bin; Liu, G.; Chen, A. Z. Near-Infrared-Activated Lysosome Pathway Death Induced by ROS Generated from Layered Double Hydroxide-Copper Sulfide Nanocomposites. ACS Appl. Mater. Interfaces 2020, 12 (36), 40673–40683.
    30. Onwudiwe, D. C.; Nkwe, V. M. Morphological Variations in Bi2S3 Nanoparticles Synthesized by Using a Single Source Precursor. Heliyon 2020, 6 (7), 04505.
    31. Xie, Y.; Riedinger, A.; Prato, M.; Casu, A.; Genovese, A.; Guardia, P.; Sottini, S.; Sangregorio, C.; Miszta, K.; Ghosh, S.; Pellegrino, T.; Manna, L. Copper Sulfide Nanocrystals with Tunable Composition by Reduction of Covellite Nanocrystals with Cu+ Ions. J. Am. Chem. Soc. 2013, 135 (46), 17630–17637.
    32. Ng, Z. Q. C.; Rath, A.; Chua, S. T.; Okano, S.; Wee, A. T. S.; Pennycook, S. J.; Okano, K.; Chua, D. H. C. Energy-Efficient Stacks - Covellite (CuS) on Polyethylene Terephthalate Film: A Sustainable Solution to Heat Management. J. Phys. Chem. C 2020, 124 (5), 3314–3321.
    33. Chen, W.; Xie, Y.; Hu, C.; Zeng, T.; Jiang, H.; Qiao, F.; Gu, J.; Dong, X.; Zhao, X. Room Temperature Synthesis of Aqueous Soluble Covellite CuS Nanocrystals with High Photothermal Conversion. CrystEngComm 2018, 20 (30), 4283–4290.
    34. Singh, S. K.; Kumar, A.; Gahtori, B.; Shruti; Sharma, G.; Patnaik, S.; Awana, V. P. S. Bulk Superconductivity in Bismuth Oxysulfide Bi4O4S3. J. Am. Chem. Soc. 2012, 134 (40), 16504–16507.
    35. Nain, A.; Wei, S. C.; Lin, Y. F.; Tseng, Y. T.; Mandal, R. P.; Huang, Y. F.; Huang, C. C.; Tseng, F. G.;, Chang, H. T. Copper Sulfide Nanoassemblies for Catalytic and Photoresponsive Eradication of Bacteria from Infected Wounds. ACS Appl. Mater. Interfaces 2021, 13 (7), 7865-7878.
    36. Steimle, B. C.; Fagan, A. M.; Butterfield, A. G.; Lord, R. W.; McCormick, C. R.; Di Domizio, G. A.; Schaak, R. E. Experimental Insights into Partial Cation Exchange Reactions for Synthesizing Heterostructured Metal Sulfide Nanocrystals. Chem. Mater. 2020, 32 (13), 5461–5482.
    37. Wu, H.; Chen, W. Synthesis and Reaction Temperature-Tailored Self-Assembly of Copper Sulfide Nanoplates. Nanoscale 2011, 3 (12), 5096–5102.
    38. Guo, Q.; Liang, F.; Sun, Z.; Wang, Y.; Li, X. B.; Xia, S. G.; Zhang, Z. C.; Huang, L.; Wu, L. Z. Optimal D-Band-Induced Cu3N as a Cocatalyst on Metal Sulfides for Boosting Photocatalytic Hydrogen Evolution. J. Mater. Chem. A 2020, 8 (43), 22601–22606.
    39. Li, X.; Xiong, J.; Gao, X.; Ma, J.; Chen, Z.; Kang, B.; Liu, J.; Li, H.; Feng, Z.; Huang, J. Novel BP/BiOBr S-Scheme Nano-Heterojunction for Enhanced Visible-Light Photocatalytic Tetracycline Removal and Oxygen Evolution Activity. J. Hazard. Mater. 2020, 387, 121690.
    40. Kar, P.; Farsinezhad, S.; Zhang, X.; Shankar, K. Anodic Cu2S and CuS Nanorod and Nanowall Arrays: Preparation, Properties and Application in CO2 Photoreduction. Nanoscale 2014, 6 (23), 14305–14318.
    41. Ahmad, B.; Kamal, M. Z.; Khan, R. H. Alkali-Induced Conformational Transition in Different Domains of Bovine Serum Albumin. Protein Pept. Lett. 2004, 11 (4), 307–315.
    42. Louis-Jeune, C.; Andrade-Navarro, M. A.; Perez, I. C. Prediction of Protein Secondary Structure from Circular Dichroism Using Theoretically Derived Spectra. Proteins Struct. Funct. Bioinforma. 2012, 80 (2), 374–381.
    43. Zheng, L.; Teng, F.; Ye, X.; Zheng, H.; Fang, X. Photo/Electrochemical Applications of Metal Sulfide/TiO2 Heterostructures. Adv. Energy Mater. 2020, 10 (1), 1–32.
    44. Mascaretti, L.; Dutta, A.; Kment, Š.; Shalaev, V. M.; Boltasseva, A.; Zbořil, R.; Naldoni, A. Plasmon-Enhanced Photoelectrochemical Water Splitting for Efficient Renewable Energy Storage. Adv. Mater. 2019, 31 (31), 1–23.
    45. Yan, C.; Tian, Q.; Yang, S. Recent Advances in the Rational Design of Copper Chalcogenide to Enhance the Photothermal Conversion Efficiency for the Photothermal Ablation of Cancer Cells. RSC Adv. 2017, 7 (60), 37887–37897.
    46. Huang, J.; Zhou, J.; Zhuang, J.; Gao, H.; Huang, D.; Wang, L.; Wu, W.; Li, Q.; Yang, D. P.; Han, M. Y. Strong Near-Infrared Absorbing and Biocompatible CuS Nanoparticles for Rapid and Efficient Photothermal Ablation of Gram-Positive and -Negative Bacteria. ACS Appl. Mater. Interfaces 2017, 9 (42), 36606–36614.
    47. Lei, Q.; Yang, S.; Ding, D.; Tan, J.; Liu, J.; Chen, R. Local-Interaction-Field-Coupled Semiconductor Photocatalysis: Recent Progress and Future Challenges. J. Mater. Chem. A 2021, 9, 2491–2525
    48. Zhang, X.; Guo, Y.; Tian, J.; Sun, B.; Liang, Z.; Xu, X.; Cui, H. Controllable Growth of MoS2 Nanosheets on Novel Cu2S Snowflakes with High Photocatalytic Activity. Appl. Catal. B Environ. 2018, 232, 355–364.
    49. Wang, Y.; Li, Z.; Hu, Y.; Liu, J.; Guo, M.; Wei, H.; Zheng, S.; Jiang, T.; Sun, X.; Ma, Z.; Sun, Y.; Besenbacher, F.; Chen, C.; Yu, M. Photothermal Conversion-Coordinated Fenton-like and Photocatalytic Reactions of Cu2-XSe-Au Janus Nanoparticles for Tri-Combination Antitumor Therapy. Biomaterials 2020, 255, 120167.
    50. Gawande, M. B.; Goswami, A.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R. S. Cu and Cu-Based Nanoparticles : Synthesis and Applications in Catalysis. Chem. Rev. 2015, 116 (6), 3722–3811.
    51. Li, H.; Shang, J.; Zhu, H.; Yang, Z.; Ai, Z.; Zhang, L. Oxygen Vacancy Structure Associated Photocatalytic Water Oxidation of BiOCl. ACS Catal. 2016, 6 (12), 8276–8285.
    52. Li, H.; Qin, F.; Yang, Z.; Cui, X.; Wang, J.; Zhang, L. New Reaction Pathway Induced by Plasmon for Selective Benzyl Alcohol Oxidation on BiOCl Possessing Oxygen Vacancies. J. Am. Chem. Soc. 2017, 139 (9), 3513–3521.
    53. Li, L.; Qin, Z.; Ries, L.; Hong, S.; Michel, T.; Yang, J.; Salameh, C.; Bechelany, M.; Miele, P.; Kaplan, D.; Chhowalla, M.; Voiry, D. Role of Sulfur Vacancies and Undercoordinated Mo Regions in MoS2 Nanosheets toward the Evolution of Hydrogen. ACS Nano 2019, 13 (6), 6824–6834.
    54. Liu, N.; Zhu, M.; Niu, N.; Ren, J.; Yang, N.; Yu, C. An Aza-Bodipy Probe Decorated Mesoporous Black TiO2 Nanoplatform for the Highly Efficient Synergistic Phototherapy. ACS Appl. Mater. Interfaces 2020, 12 (37), 41071–41079.
    55. Li, J. J.; Zhang, M.; Weng, B.; Chen, X.; Chen, J.; Jia, H. P. Oxygen Vacancies Mediated Charge Separation and Collection in Pt/WO3 Nanosheets for Enhanced Photocatalytic Performance. Appl. Surf. Sci. 2020, 507, 145133.
    56. Lin, Y. J.; Khan, I.; Saha, S.; Wu, C. C.; Barman, S. R.; Kao, F. C.; Lin, Z. H. Thermocatalytic Hydrogen Peroxide Generation and Environmental Disinfection by Bi2Te3 Nanoplates. Nat. Commun. 2021, 12, 180.
    57. Stiefel, P.; Emrich, S. S.; Maniura-Weber, K.; Ren, Q. Critical Aspects of Using Bacterial Cell Viability Assays with the Fluorophores SYTO9 and Propidium Iodide. BMC Microbiol. 2015, 15 (1), 1–9.
    58. Bulkley, D.; Brandi, L.; Polikanov, Y. S.; Fabbretti, A.; O’Connor, M.; Gualerzi, C. O.; Steitz, T. A. The Antibiotics Dityromycin and GE82832 Bind Protein S12 and Block EF-G-Catalyzed Translocation. Cell Rep. 2014, 6 (2), 357–365.
    59. Selimoglu, E. Aminoglycoside-Induced Ototoxicity. Curr. Pharm. Des. 2006, 13 (1), 119–126.
    60. Vladar, E. K.; Lee, Y. L.; Stearns, T.; Axelrod, J. D. Mechanisms of Resistance to Aminoglycoside Antibiotics: Overview and Perspectives. HHS Public Access. 2015, 7 (1), 37–54.
    61. Rastogi, R. P.; Singh, S. P.; Häder, D. P.; Sinha, R. P. Detection of Reactive Oxygen Species (ROS) by the Oxidant-Sensing Probe 2’,7’-Dichlorodihydrofluorescein Diacetate in the Cyanobacterium Anabaena Variabilis PCC 7937. Biochem. Biophys. Res. Commun. 2010, 397 (3), 603–607.
    62. Gravel, J.; Paradis, B. C.; Schmitzer, A. R. Adaptation of a Bacterial Membrane Permeabilization Assay for Quantitative Evaluation of Benzalkonium Chloride as a Membrane-Disrupting Agent. Medchemcomm 2017, 8 (7), 1408–1413.
    63. Liu, Y.; Tian, Y.; Han, Q.; Yin, J.; Zhang, J.; Yu, Y.; Yang, W.; Deng, Yi.; Synergism of 2D/1D MXene/Cobalt Nanowire Heterojunctions for Boosted Photo-Activated Antibacterial Application. Chem. Eng. J. 2021, 410, 128209.
    64. Cunha, B. A.; Cunha, C. B. Vancomycin is Ineffective in Eliminating Methicillin-Resistant Staphylococcus aureus Colonization of Respiratory Secretions in Ventilated Intensive Care Unit Patients: A Clinical and Pharmacokinetic Perspective. Clin. Infect. Dis. 2018, 66 (6), 981–982.
    65. Bulard, E.; Aupart, F. M. P.; Dubost, H.; Zheng, W.; Fontaine, B. M. N.; Herry, J. M.; Bourguignon, B. Competition of Bovine Serum Albumin Adsorption and Bacterial Adhesion onto Surface-Grafted ODT: In Situ Study by Vibrational SFG and Fluorescence Confocal Microscopy. Langmuir 2012, 28 (49), 17001–17010.

    Chapter 5

    1. Tchounwou, P. B.; Yedjou, C. G.; Patlolla, A. K.; Sutton, D. J. Heavy Metal Toxicity and the Environment. Exp. Suppl. 2012, 101, 133–164.
    2. Dai, B.; Cao, M.; Fang, G.; Liu, B.; Dong, X.; Pan, M.; Wang, S. Schiff Base–Chitosan Grafted Multiwalled Carbon Nanotubes as a Novel Solid–Phase Extraction Adsorbent for Determination of Heavy Metal by ICP–MS. J. Hazard. Mater. 2012, 219–220, 103–110.
    3. Bontidean, I.; Ahlqvist, J.; Mulchandani, A.; Chen, W.; Bae, W.; Mehra, R. K.; Mortari, A.; Csöregi, E. Novel Synthetic Phytochelatin–Based Capacitive Biosensor for Heavy Metal Ion Detection. Biosens. Bioelectron. 2003, 18, 547–553.
    4. Guzmán–Mar, J. L.; Hinojosa–Reyes, L.; Serra, A. M.; Hernández–Ramírez, A.; Cerdà, V. Applicability of Multisyringe Chromatography Coupled to Cold–Vapor Atomic Fluorescence Spectrometry for Mercury Speciation Analysis. Anal. Chim. Acta 2011, 708, 11–18.
    5. Chen, C.; Niu, X.; Chai, Y.; Zhao, H.; Lan, M. Bismuth–Based Porous Screen–Printed Carbon Electrode with Enhanced Sensitivity for Trace Heavy Metal Detection by Stripping Voltammetry. Sens. Actuators, B 2013, 178, 339–342.
    6. Berlina, A. N.; Zherdev, A. V.; Dzantiev, B. B. Progress in Rapid Optical Assays for Heavy Metal Ions Based on the use of Nanoparticles and Receptor Molecules. Microchim. Acta 2019, 186, 172.
    7. Guo, Y.; Zhang, L.; Zhang, S.; Yang, Y.; Chen, X.; Zhang, M. Fluorescent Carbon Nanoparticles for the Fluorescent Detection of Metal Ions. Biosens. Bioelectron. 2015, 63, 61–71.
    8. Gao, X.; Du, C.; Zhuang, Z.; Chen, W. Carbon Quantum Dot–Based Nanoprobes for Metal Ion Detection. Journal of Materials Chemistry C 2016, 4, 6927–6945.
    9. Lien, C.–W.; Tseng, Y.–T.; Huang, C.–C.; Chang, H.–T. Logic Control of Enzyme–Like Gold Nanoparticles for Selective Detection of Lead and Mercury Ions. Anal. Chem. 2014, 86, 2065–2072.
    10. Wang, H.; Da, L.; Yang, L.; Chu, S.; Yang, F.; Yu, S.; Jiang, C. Colorimetric Fluorescent Paper Strip with Smartphone Platform for Quantitative Detection of Cadmium Ions in Real Samples. J. Hazard. Mater. 2020, 392, 122506.
    11. Goswami, N.; Zheng, K.; Xie, J. Bio–NCs – the Marriage of Ultrasmall Metal Nanoclusters with Biomolecules. Nanoscale 2014, 6, 13328–13347.
    12. Wu, X.; Wu, P.; Gu, M.; Xue, J. Ratiometric Fluorescent Probe Based On Auncs Induced AIE for Quantification and Visual Sensing of Glucose. Anal. Chim. Acta 2020, 1104, 140–146.
    13. Kang, X.; Zhu, M. Tailoring the Photoluminescence of Atomically Precise Nanoclusters. Chem. Soc. Rev. 2019, 48, 2422–2457.
    14. Weerawardene, K. L. D. M.; Aikens, C. M. Theoretical Insights into the Origin of Photoluminescence of Au25(SR)18– Nanoparticles. J. Am. Chem. Soc. 2016, 138, 11202–11210.
    15. Wu, Z.; Yao, Q.; Chai, O. J. H.; Ding, N.; Xu, W.; Zang, S.; Xie, J. Unraveling the Impact of Gold(I)–Thiolate Motifs on the Aggregation–Induced Emission of Gold Nanoclusters. Angew. Chem., Int. Ed. 2020, https://doi.org/10.1002/ange.201916675
    16. Jin, L.; Meng, Z.; Zhang, Y.; Cai, S.; Zhang, Z.; Li, C.; Shang, L.; Shen, Y. Ultrasmall Pt Nanoclusters as Robust Peroxidase Mimics for Colorimetric Detection of Glucose in Human Serum. ACS Appl. Mater. Interfaces 2017, 9, 10027–10033.
    17. He, Z.; Shu, T.; Su, L.; Zhang, X. Strategies of Luminescent Gold Nanoclusters for Chemo–/Bio–Sensing. Molecules 2019, 24.
    18. Liu, J. DNA–Stabilized, Fluorescent, Metal Nanoclusters for Biosensor Development. TrAC, Trends Anal. Chem. 2014, 58, 99–111.
    19. Halawa, M. I.; Lai, J.; Xu, G. Gold Nanoclusters: Synthetic Strategies and Recent Advances in Fluorescent Sensing. Mater. Today Nano 2018, 3, 9–27.
    20. Chevrier, D. M.; Raich, L.; Rovira, C.; Das, A.; Luo, Z.; Yao, Q.; Chatt, A.; Xie, J.; Jin, R.; Akola, J.; Zhang, P. Molecular–Scale Ligand Effects in Small Gold–Thiolate Nanoclusters. J. Am. Chem. Soc. 2018, 140, 15430–15436.
    21. Kang, X.; Xiong, L.; Wang, S.; Yu, H.; Jin, S.; Song, Y.; Chen, T.; Zheng, L.; Pan, C.; Pei, Y.; Zhu, M. Shape–Controlled Synthesis of Trimetallic Nanoclusters: Structure Elucidation and Properties Investigation. Chem. – Eur. J. 2016, 22, 17145–17150.
    22. Luo, Z.; Yuan, X.; Yu, Y.; Zhang, Q.; Leong, D. T.; Lee, J. Y.; Xie, J. From Aggregation–Induced Emission of Au(I)–Thiolate Complexes to Ultrabright Au(0)@Au(I)–Thiolate Core–Shell Nanoclusters. J. Am. Chem. Soc. 2012, 134, 16662–16670.
    23. Yang, H.; Lu, F.; Sun, Y.; Yuan, Z.; Lu, C. Fluorescent Gold Nanocluster–Based Sensor Array for Nitrophenol Isomer Discrimination via an Integration of Host–Guest Interaction and Inner Filter Effect. Anal. Chem. 2018, 90, 12846–12853.
    24. Yuan, Z.; Du, Y.; Tseng, Y.–T.; Peng, M.; Cai, N.; He, Y.; Chang, H.–T.; Yeung, E. S. Fluorescent Gold Nanodots Based Sensor Array for Proteins Discrimination. Anal. Chem. 2015, 87, 4253–4259.
    25. Pyykkö, P. Theoretical Chemistry of Gold. Angew. Chem., Int. Ed. 2004, 43, 4412–4456.
    26. Kim, M.; Taylor, T. J.; Gabbaï, F. P. Hg(II)···Pd(II) Metallophilic Interactions. J. Am. Chem. Soc. 2008, 130, 6332–6333.
    27. Burini, A.; Fackler, J. P.; Galassi, R.; Grant, T. A.; Omary, M. A.; Rawashdeh–Omary, M. A.; Pietroni, B. R.; Staples, R. J. Supramolecular Chain Assemblies Formed by Interaction of a π Molecular Acid Complex of Mercury with π–Base Trinuclear Gold Complexes. J. Am. Chem. Soc. 2000, 122, 11264–11265.
    28. Hofmann, C. M.; Essner, J. B.; Baker, G. A.; Baker, S. N. Protein–Templated Gold Nanoclusters Sequestered within Sol–Gel Thin Films for the Selective and Ratiometric Luminescence Recognition of Hg2+. Nanoscale 2014, 6, 5425–5431.
    29. Zhong, Y.; Zhu, J.; Wang, Q.; He, Y.; Ge, Y.; Song, C. J. M. A. Copper Nanoclusters Coated with Bovine Serum Albumin as a Regenerable Fluorescent Probe for Copper (II) Ion. 2015, 182, 909–915.
    30. Yue, Y.; Liu, T.–Y.; Li, H.–W.; Liu, Z.; Wu, Y. Microwave–Assisted Synthesis of BSA–Protected Small Gold Nanoclusters and Their Fluorescence–Enhanced Sensing of Silver (I) Ions. Nanoscale 2012, 4, 2251–2254.
    31. Song, C.; Xu, J.; Chen, Y.; Zhang, L.; Lu, Y.; Qing, Z. DNA–Templated Fluorescent Nanoclusters for Metal Ions Detection. Molecules 2019, 24, 4189.
    32. Bian, R.–X.; Wu, X.–T.; Chai, F.; Li, L.; Zhang, L.–Y.; Wang, T.–T.; Wang, C.–G.; Su, Z.–M. Facile Preparation of Fluorescent Au Nanoclusters–Based Test Papers for Recyclable Detection of Hg2+ And Pb2+. Sens. Actuators, B 2017, 241, 592–600.
    33. Liu, Z.; Jing, X.; Zhang, S.; Tian, Y. A Copper Nanocluster–Based Fluorescent Probe for Real–Time Imaging and Ratiometric Biosensing of Calcium Ions in Neurons. Anal. Chem. 2019, 91, 2488–2497.
    34. Wang, J.; Zhang, Z.; Gao, X.; Lin, X.; Liu, Y.; Wang, S. A Single Fluorophore Ratiometric Nanosensor Based on Dual–Emission DNA–Templated Silver Nanoclusters for Ultrasensitive and Selective Pb2+ Detection. Sens. Actuators, B 2019, 282, 712–718.
    35. Xiao, N.; Dong, J. X.; Liu, S. G.; Li, N.; Fan, Y. Z.; Ju, Y. J.; Li, N. B.; Luo, H. Q. Multifunctional Fluorescent Sensors for Independent Detection of Multiple Metal Ions Based on Ag Nanoclusters. Sens. Actuators, B 2018, 264, 184–192.
    36. Lin, Y.–J.; Chen, P.–C.; Yuan, Z.; Ma, J.–Y.; Chang, H.–T. The Isomeric Effect of Mercaptobenzoic Acids on the Preparation and Fluorescence Properties of Copper Nanoclusters. Chem. Commun. 2015, 51, 11983–11986.
    37. Xie, J.; Zheng, Y.; Ying, J. Y. Protein–Directed Synthesis of Highly Fluorescent Gold Nanoclusters. J. Am. Chem. Soc. 2009, 131, 888–889.
    38. Le Guével, X.; Hötzer, B.; Jung, G.; Hollemeyer, K.; Trouillet, V.; Schneider, M. Formation of Fluorescent Metal (Au, Ag) Nanoclusters Capped in Bovine Serum Albumin Followed by Fluorescence and Spectroscopy. J. Phys. Chem. C 2011, 115, 10955–10963.
    39. Gao, F.; Cai, P.; Yang, W.; Xue, J.; Gao, L.; Liu, R.; Wang, Y.; Zhao, Y.; He, X.; Zhao, L.; Huang, G.; Wu, F.; Zhao, Y.; Chai, Z.; Gao, X. Ultrasmall [64Cu]Cu Nanoclusters for Targeting Orthotopic Lung Tumors Using Accurate Positron Emission Tomography Imaging. ACS Nano 2015, 9, 4976–4986.
    40. Goswami, N.; Yao, Q.; Chen, T.; Xie, J. Mechanistic Exploration and Controlled Synthesis of Precise Thiolate–Gold Nanoclusters. Coord. Chem. Rev. 2016, 329, 1–15.
    41. Chen, Y.; Yang, T.; Pan, H.; Yuan, Y.; Chen, L.; Liu, M.; Zhang, K.; Zhang, S.; Wu, P.; Xu, J. Photoemission Mechanism of Water–Soluble Silver Nanoclusters: Ligand–to–Metal–Metal Charge Transfer vs Strong Coupling between Surface Plasmon and Emitters. J. Am. Chem. Soc. 2014, 136, 1686–1689.
    42. Wu, Z.; Jin, R. On the Ligand’s Role in the Fluorescence of Gold Nanoclusters. Nano Lett. 2010, 10, 2568–2573.
    43. Hutter, E.; Fendler, J. H. Exploitation of Localized Surface Plasmon Resonance. Adv. Mater. 2004, 16, 1685–1706.
    44. Tseng, Y.–T.; Cherng, R.; Yuan, Z.; Wu, C.–W.; Chang, H.–T.; Huang, C.–C. Ultrasound–Mediated Modulation of the Emission of Gold Nanodots. Nanoscale 2016, 8, 5162–5169.
    45. Mustalahti, S.; Myllyperkiö, P.; Malola, S.; Lahtinen, T.; Salorinne, K.; Koivisto, J.; Häkkinen, H.; Pettersson, M. Molecule–like Photodynamics of Au102(pMBA)44 Nanocluster. ACS Nano 2015, 9, 2328–2335.
    46. Weerawardene, K. L. D. M.; Guidez, E. B.; Aikens, C. M. Photoluminescence Origin of Au38(SR)24 and Au22(SR)18 Nanoparticles: A Theoretical Perspective. J. Phys. Chem. C 2017, 121, 15416–15423.
    47. Pyo, K.; Thanthirige, V. D.; Kwak, K.; Pandurangan, P.; Ramakrishna, G.; Lee, D. Ultrabright Luminescence from Gold Nanoclusters: Rigidifying the Au(I)–Thiolate Shell. J. Am. Chem. Soc. 2015, 137, 8244–8250.
    48. Velázquez, J. J.; Tikhomirov, V. K.; Chibotaru, L. F.; Cuong, N. T.; Kuznetsov, A. S.; Rodríguez, V. D.; Nguyen, M. T.; Moshchalkov, V. V. Energy Level Diagram and Kinetics of Luminescence of Ag Nanoclusters Dispersed in a Glass Host. Opt. Express 2012, 20, 13582–13591.
    49. Wei, W.; Lu, Y.; Chen, W.; Chen, S. One–Pot Synthesis, Photoluminescence, and Electrocatalytic Properties of Subnanometer–Sized Copper Clusters. J. Am. Chem. Soc. 2011, 133, 2060–2063.
    50. Hsu, Y.–C.; Hung, M.–J.; Chen, Y.–A.; Wang, T.–F.; Ou, Y.–R.; Chen, S.–H. Identifying Reducing and Capping Sites of Protein–Encapsulated Gold Nanoclusters. Molecules 2019, 24, 1630.
    51. Zhang, J.; Li, Z.; Huang, J.; Liu, C.; Hong, F.; Zheng, K.; Li, G. Size Dependence of Gold Clusters with Precise Numbers of Atoms in Aerobic Oxidation of D–Glucose. Nanoscale 2017, 9, 16879–16886.
    52. Rao, T. U. B.; Nataraju, B.; Pradeep, T. Ag9 Quantum Cluster through a Solid–State Route. J. Am. Chem. Soc. 2010, 132, 16304–16307.
    53. Goswami, N.; Giri, A.; Bootharaju, M. S.; Xavier, P. L.; Pradeep, T.; Pal, S. K. Copper Quantum Clusters in Protein Matrix: Potential Sensor of Pb2+ Ion. Anal. Chem. 2011, 83, 9676–9680.
    54. Yue, Y.; Li, H.–W.; Liu, T.–Y.; Wu, Y. Exploring the Role of Ligand–BSA in the Response of BSA–Protected Gold–Nanoclusters to Silver (I) Ions by FT–IR and Circular Dichroism Spectra. Vib. Spectrosc. 2014, 74, 137–141.
    55. Cao, X.–L.; Li, H.–W.; Yue, Y.; Wu, Y. pH–Induced Conformational Changes of BSA in Fluorescent AuNCs@BSA and its Effects on NCs Emission. Vib. Spectrosc. 2013, 65, 186–192.
    56. Louis–Jeune, C.; Andrade–Navarro, M. A.; Perez–Iratxeta, C. Prediction of Protein Secondary Structure from Circular Dichroism Using Theoretically Derived Spectra. Proteins 2012, 80, 374–381.
    57. Kluz, M.; Nieznańska, H.; Dec, R.; Dzięcielewski, I.; Niżyński, B.; Ścibisz, G.; Puławski, W.; Staszczak, G.; Klein, E.; Smalc–Koziorowska, J.; Dzwolak, W. Revisiting the Conformational State of Albumin Conjugated to Gold Nanoclusters: A Self–Assembly Pathway to Giant Superstructures Unraveled. PloS one 2019, 14, e0218975–e0218975.
    58. Zhou, W.; Cao, Y.; Sui, D.; Guan, W.; Lu, C.; Xie, J. Ultrastable BSA–Capped Gold Nanoclusters with a Polymer–Like Shielding Layer Against Reactive Oxygen Species in Living Cells. Nanoscale 2016, 8, 9614–9620.
    59. Chib, R.; Butler, S.; Raut, S.; Shah, S.; Borejdo, J.; Gryczynski, Z.; Gryczynski, I. Effect of Quencher, Denaturants, Temperature and pH on the Fluorescent Properties of BSA Protected Gold Nanoclusters. J. Lumin. 2015, 168, 62–68.
    60. Olaru, M.; Kögel, J. F.; Aoki, R.; Sakamoto, R.; Nishihara, H.; Lork, E.; Mebs, S.; Vogt, M.; Beckmann, J. Tri– and Tetranuclear Metal–String Complexes with Metallophilic d10–d10 Interactions. Chem. – Eur. J. 2020, 26, 275–284.
    61. Li, S.; Lai, J.; Qi, L.; Saqib, M.; Majeed, S.; Tong, Y.; Xu, G. Sensitive and Selective Colorimetric Detection of Hg2+ by a Hg2+ Induced Dual Signal Amplification Strategy Based on Cascade–Type Catalytic Reactions. Analyst 2016, 141, 2362–2366.
    62. Chansuvarn, W.; Tuntulani, T.; Imyim, A. Colorimetric Detection of Mercury (II) Based on Gold Nanoparticles, Fluorescent Gold Nanoclusters and other Gold–Based Nanomaterials. TrAC, Trends Anal. Chem. 2015, 65, 83–96.
    63. Zarlaida, F.; Adlim, M. Gold and Silver Nanoparticles and Indicator Dyes as Active Agents in Colorimetric Spot and Strip Tests for Mercury (II) Ions: A Review. Microchim. Acta 2017, 184, 45–58.
    64. Huang, C.–C.; Yang, Z.; Lee, K.–H.; Chang, H.–T. Synthesis of Highly Fluorescent Gold Nanoparticles for Sensing Mercury (II). Angew. Chem., Int. Ed. 2007, 46, 6824–6828.
    65. Huang, C.–C.; Chang, H.–T. Parameters for Selective Colorimetric Sensing of Mercury (II) in Aqueous Solutions Using Mercaptopropionic Acid–Modified Gold Nanoparticles. Chem. Commun. 2007, 1215–1217.
    66. Divsar, F.; Habibzadeh, K.; Shariati, S.; Shahriarinour, M. Aptamer Conjugated Silver Nanoparticles for the Colorimetric Detection of Arsenic Ions Using Response Surface Methodology. Anal. Methods 2015, 7, 4568–4576.
    67. Al–daher, I. M.; Salman, S. R.; Noori, M. A. 1H NMR Study of Some Thiosalicylic Acid Complexes. Spectrosc. Lett. 1990, 23, 791–799.
    68. S. Shooshtarya, S. Behtasha, S. Nafisi, Arsenic trioxide binding to serum proteins, J. Photochem. Photobiol. B 148 (2015) 31–36.
    69. W. Shi, J. Dong, R. A. Scott, M. Y. Ksenzenko, B. P. Rosen, The role of arsenic–thiol interactions in metalloregulation of the Ars operon, J. Biol. 271 (1996) 9291–9297.
    70. Lin, Y.–S.; Chiu, T.–C.; Hu, C.–C. Fluorescence–Tunable Copper Nanoclusters and their Application in Hexavalent Chromium Sensing. RSC Adv. 2019, 9, 9228–9234.
    71. Li, J.; Wang, Y.; Jiao, Y.; Jia, R.; Chen, Z. Core–Shell Cu@Au Nanoparticles as An Optical Probe for Ultrasensitive Detection of Chromium (VI) via an Etching Effect. Microchim. Acta 2017, 184, 3817–3823.

    QR CODE