研究生: |
吳蘇容 |
---|---|
論文名稱: |
模擬為基之近似動態規劃應用在TFT-LCD隨機產能規劃 Simulation-based Approximate Dynamic Programming for Stochastic Capacity Planning in TFT-LCD Industry |
指導教授: | 林則孟 |
口試委員: |
吳正鴻
陳子立 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 130 |
中文關鍵詞: | TFT-LCD 、產能規劃 、隨機動態規劃 、近似動態規劃 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究延伸朱(2008)探討的考慮需求不確定之單階層多製造廠產能規劃問題,在TFT-LCD產業面臨的市場需求具有劇烈波動的環境中,考量在規劃期間內,各產品族於各期有不同的需求分配,且前後期的需求之間存在關連性,欲達到淨利潤最大的目標下,決定各期各產品族最佳的產能分配決策,以及當現有產能無法滿足需求時,僅考量購買附屬設備─光罩來增加產品族於各廠區的產能,動態地決定各期最佳的產能擴充決策。
朱(2008)利用隨機動態規劃的後推歸納法(Backward Induction)進行求解,由於此方法計算和衡量每一個不同的狀態和決策組合,對於多廠區、多產品,甚至是多階層的產能規劃問題,在求解上的複雜度會呈指數的成長。相較於動態規劃的後推歸納法,本研究提出的近似動態規劃(Approximate Dynamic Programming Algorithm, ADP)結合蒙地卡羅模擬、Heuristics和前推歸納法(Forward Induction),不需計算所有狀態執行各種決策的value function,透過蒙地卡羅模擬法決定可能的需求路徑(Demand Trajectories),搭配Heuristics挑選較佳的決策,計算過程中各狀態的淨利潤值,以近似隨機動態規劃各狀態的績效值,以期能更有效率地得到最佳的產能分配結果與穩健的產能擴充計劃。
在與朱(2008)相同的實際產業案例環境中,驗證本研究提出的近似動態規劃模式,並與朱(2009)建構的隨機動態產能規劃模式結果進行比較,包含求解效率和姐的品質。更進一步加入朱(2009)未考量的因子─各產品於各期的需求情境不一致,在更大的狀態空間中,比較近似動態規劃模式與近似實務邏輯的滾動式線性規劃(Rolling Horizon MILP)的求解結果。另外,本研究同時探討近似動態規劃模式中,各參數對於求解結果的影響,包含需求路徑抽樣的數量、不同Heuristics和Bellman iteration收斂停止條件的訂定等。
1. 陳韋均,「TFT Array多廠區之產能與產品組合規劃問題」,國立清華大學工業工程與工程管理學系碩士論文,2006。
2. 陳子立、林則孟,2008,「需求不確定下之TFT-LCD多廠區隨機產能規劃模式」, 九十七年度中國工業工程學會年會論文,中原大學。
3. 張益菁,「考慮需求不確定之單階多廠產能規劃問題-以TFT-LCD產業為例」,國立清華大學工業工程與工程管理學系碩士論文,2007。
4. 示欣惠,「二階層多廠區產能規劃—以TFT-LCD產業為例」,國立清華大學工業工程與工程管理學系碩士論文,2008。
5. 朱曉晴,「考量需求不確定性之隨機動態產能規劃—以TFT-LCD產業為例」,國立清華大學工業工程與工程管理學系碩士論文,2009。
6. Ahmed, S, “Semiconductor Tool Planning via Multi-Stage Stochastic Programming”, Proceedings of 2000 International Conference on Modeling and Analysis of Semiconductor Manufacturing, pp.153-157, 2002.
7. Asl, F. M. and Ulsoy, A. G., “Stochastic Optimal Capacity Management in Reconfigurable Manufacturing Systems”, CIRP Annals - Manufacturing Technology, Vol.52(1), pp.371-374, 2003.
8. Balasubramanian, J. and Grossmann, I. E., “Approximation to Multistage Stochastic Optimization in Multiperiod Batch Plant Scheduling under Demand Uncertainty”, Industrial Engineering Chemical Research, 43, pp.3695-3713, 2004.
9. Bhatnager, S., Gaucherand, E. F., Fu, M. C., He, Y. and Marcus, S. I., “A Markov Decision Process Model for Capacity Expansion and Allocation”, Proceedings of the 38th Conference on Decision & Control, pp.1380-1385, 1999.
10. Ceryan, O. and Koren, Y., “Manufacturing Capacity Planning Strategies”, CIRP Annals - Manufacturing Technology, Vol.58(1), pp.403-406, 2009.
11. Chen, T. L., Lin, J. T. and Chen, Y. Y., “A capacity allocation and expansion problem for TFT-LCD multi-site manufacturing”, working paper, under review, 2008b.
12. Chen, T. L., Lin, J. T. and Fang, S. C., “A Shadow-Price Based Heuristic for Capacity Planning of TFT-LCD Manufacturing”, Journal of Industrial and Management Optimization, 6, pp.209-239, 2010.
13. Cheng, L., Subrahmanian, E. and Westerberg, W., “Multi-objective decisions on capacity planning and production-inventory control under uncertainty”, Industrial & Engineering Chemistry Research, 43, pp.2192-2208, 2004.
14. Choi, J., Realff, M. J. and Lee, J. H., “Dynamic Programming in A Heuristically Confined State Space: A Stochastic Resource-Constrained Project Scheduling Application”, Computers & Chemical Engineering, Vol.28, pp.1039-1058, 2004.
15. Choi, J., Lee, J. H. and Realff, M. J., “An Algorithm Framework for Improving Heuristic Solutions Part II: A New Version of the Stochastic Traveling Salesman Problem”, Computers & Chemical Engineering, Vol.28(8), pp.1297-1307, 2004.
16. Choi, J., Realef, M. J. and Lee, J. H., “Stochastic dynamic programming with localized cost-to-go approximators application to large scale supply chain management under demand uncertainty”, Chemical Engineering Research and Design, 83(A6), pp.752-758, 2005.
17. Choi, J., Realff, M. J. and Lee, J. H., “Approximate Dynamic Programming: Application to Process Supply Chain Management”, AIChE Journal, Vol.52, No.7, pp.2473-2485, 2006.
18. He, Y., Bhatnager, S., Fu, M. C. and Marcus, S. I., “Approximate Policy Iteration for Semiconductor Fab-Level Decision Making – a Case Study”, working paper.
19. Hood, S. J., Bermon, S. and Barahona, F., “Capacity Planning under Demand Uncertainty for Semiconductor Manufacturing“, IEEE Transactions on Semiconductor Manufacturing, 16(2), pp.173-280, 2003.
20. Karabuk, S. and Wu, S. D., “Coordinating Strategic Capacity Planning in the Semiconductor Industry“, Operations Research, 51(6), pp.839-849, 2003.
21. Katanyukul, T., Duff, W. S. and Chong, E. K. P., “Approximate Dynamic Programming for An Inventory Problem: Empirical Comparison”, Computers & Industrial Engineering, in press, 2011.
22. Levis, A. A. and Papageorgiou, L. G., “A hierarchical solution approach for multi-site capacity planning under uncertainty in the pharmaceutical industry“, Computer and Chemical Engineering, 28, pp.707-725, 2004.
23. Li, C., Liu, F., Cao, H. and Wang, Q., “A Stochastic Dynamic Programming Based Model for Uncertain Production Planning of Re-manufacturing System”, International Journal of Production Research, 47(13), 3657-3668, 2009.
24. Lin, J. T., Chen, T. L. and Lin, Y. T., “A Hierarchical Planning and Scheduling Framework for TFT-LCD Production Chain”, 2006 IEEE International Conference on Service Operations and Logistics, and Informatics, pp.711-716, 2006.
25. Lin, J. T., Chen, T. L. and Chen, W. J., “Capacity and product mix planning problem for TFT Array multi-plant”, Journal of the Chinese Institute of Industrial Engineers, 24(6), pp.489-504, 2007.
26. Lin, J. T., Wu, C. H., Chen, T. L. and Shih, S. H., “A Stochastic Programming Model for Strategic Capacity Planning in Thin Film Transistor – Liquid Crystal Display (TFT-LCD) Industry”, Computers & Operations Research, 38(7), pp.992-1007, 2010.
27. Lin, J. T., Wu, C. H., Chen, T. L. and Shih, S. H., “Modeling and Solving Two-Stage & Multi-Factory Capacity Planning with Auxiliary Tool Investments in the TFT-LCD Production Network”, working paper, 2008b.
28. Pratikakis, N.E., Realff, M. J. And Lee, J. H., “ Accounting Risk in Multistage Stochastic Problems Using Approximate Dynamic Programming”, 8th International IFAC Symposium on Dynamics and Control of Process Systems, pp.153-158, 2007.
29. Pratikakis, N.E., Realff, M. J. And Lee, J. H., “Strategic Capacity Decision-Making in A Stochastic Manufacturing Environment Using Real-Time Approximate Dynamic Programming”, Naval Research Logistics, Vol.57(3), pp. 211–224, 2010.
30. Rajagopalan, S., Singh, M. R. and Morton, T. E., “Capacity Expansion and Replacement in Growing Markets with Uncertain Technological Breakthroughs”, Management Science, 44(1), pp.12-30, 1998.
31. Romauch, M. and Hartl, R. F., “Demand Facility Location with Stochastic Demands”, Lecture Notes in Computer Science, 3777, pp.180-189, 2005.
32. Stephan, H. A., Gschwind, T. and Minner S., “Manufacturing Capacity Planning and the Value of Multi-stage Stochastic Programming under Markovian Demand”, Flexible Services and Manufacturing Journal, in press.
33. Sutton, R. S. and Barto, A. G., Reinforcement Learning, 3rd edition, (The MIT Press, Cambridge, Massachusetts, USA).
34. Swaminathan, J. M., “Tool capacity planning for semiconductor fabrication facilities under demand uncertainty“, European Journal of Operation Research, 120, pp.545-558, 2000.
35. Swaninathan, J. M., “Tool procurement planning for wafer fabrication facilities: a scenario-based approach“, IIE Transactions, 34, pp.145-155, 2002.
36. Wu, C. H. and Chuang, Y. T., “An innovative Approach for Strategic Capacity Portfolio Planning under Uncertainties”, European Journal of Operational Research, 207(2), pp.1002-1013, 2010.