簡易檢索 / 詳目顯示

研究生: 崔愷文
Tsui, Kai Wen
論文名稱: 在二分排列圖上的支配數問題
On The Domatic Number of Bipartite Permutation Graphs
指導教授: 唐傳義
Tang, Chuan Yi
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 14
中文關鍵詞: 支配集支配分割支配數二分排列圖
外文關鍵詞: dominating set, domatic partition, domatic number, bipartite permutation graph
相關次數: 點閱:52下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The Domatic Number is an important and difficult problem in graph algorithm. There are many applications in computer network. The definition of domatic number is : given a graph G( V, E ), and ask to disjoint partition vertex set V into k partitions such that each partition is a domination set, and we want to find out the maximum number, k.
    In application, the network topology can be modeled as a graph, and the domatic number d is the number which guarantee the whole network worked normally when there were d nodes broke. The domatic number problem has been proved NP-Hard in general graph, hence in this thesis, we focus on bipartite permutation graph and give a linear time algorithm.


    中文摘要
    在二分排列圖上的支配數問題
    國立清華大學資訊工程學系碩士學位論文
    學生:崔愷文
    指導教授:唐傳義
    支配數( Domatic Number )是圖形演算法上一重要且相當困難之問題,在計算機網路上有著許多方面的應用,支配數問題的定義結合了支配集問題( Dominating Set )和著色數問題( Chromatic Number )為:在一圖上,對點集合作分組,使得每一組均為一支配集,並要使分出的組數為最大。而在實際的應用上,這是一個非常實用的問題,在計算機網路上,每一個可提供服務的機器均為一節點,要讓服務能遍及所有的網路,即為一支配集問題,若希望在至少毀損k個節點時,此網路仍可正常運作,此時k即為此網路拓樸的支配數。然而,此問題在一般的圖形上為一NP-Hard問題,因此,本篇論文的內容主要是探討支配數問題在二分排列圖( Bipartite Permutation Graph )上的性質,並提出一線性時間複雜度的演算法。

    關鍵字:支配集,支配分割,支配數,二分排列圖

    TABLE OF CONTENTS 中文摘要 i ABSTRACT ii ACKNOWLDGEMENTS iii Chapter 1 - Introduction 1 Chapter 2 - Bipartite Permutation Graphs 4 Chapter 3 - Algorithm 8 Chapter 4 - Correctness of Algorithm DP 10 Chapter 5 - Conclusion 12 Reference 13

    1. A.A. Bertossi, “On the domatic number of interval graphs”, Information Processing Letters. 28 (1988) 275-280.
    2. Andreas Brandstädt, Van Bang Le, Jeremy P. Spinrad “GRAPH CLASSES A SURVEY”.
    3. A. Srinivasa Rao and C. Pandu Rangan, “Linear algorithm for domatic number problem on interval graphs”, Information Processing Letters. 33 (1989) 29-33.
    4. Haim Kaplan and Ron Shamir, “The domatic number problem on some perfect graph families”, Information Processing Letters. 49 (1994) 51-56.
    5. J. Spinrad and A. Brandstädt and L. Stewart “BIPARTITE PERMUTATION GRAPHS”, Discrete Applied Mathematics 18 (1987) 279-292
    6. M.A. Bonuccelli, “Dominating sets and domatic number of circular arc graphs”, Discrete Applied Mathematics. 12 (1985) 203-213
    7. M. Farber, “Domination, independent domination, and duality in strongly chordal graphs.” Discrete Applied Mathematics, 7:115–130, 1984.
    8. M.R. Garey and D.S. Johnson, “Computers and Intractability: A Guide to the Theory of NP-Completeness” Freeman, San Francisco, CA, 1979.
    9. S.L. Peng and M.S. Chang, “A simple linear time algorithm for the domatic partition problem on strongly chordal graphs”, Information Processing Letters. 43 (1992) 297-300.
    10. S.L. Peng and M.S. Chang. “A new approach for domatic number problem on interval graphs”, Proc. National Computer Symp. 1991, Taipei, Republic of China, pp. 236-241.
    11. S.L. Peng, J.H. Lee, J.R. Lin, C.S. Liu “On the C4-destroying of Bipartite Permutation Graphs”, Proc. Workshop on Combinatorial Mathematics and Computation Theory 2004 p.86-90
    12. T.L. Lu, P.H. Ho and G.J. Chang, “The domatic number problem in interval graphs”, SIAM J. Discrete Math. 3 (1990) 531-536.
    13. Teresa W. Haynes, Stephen T. Hedetniemi, Peter J. Slater, “DOMINATION IN GRAPHS”
    14. Tobias Riege, Jörg Rothe, Holger Spakowski, Masaki Yamamoto, “An improved exact algorithm for the domatic number problem” Information Processing Letters. 101 (2007) 101-106.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE