研究生: |
廖榮豐 Jung-Feng Liao |
---|---|
論文名稱: |
在快速時變相互干擾通道中一種新的全多樣化自調式通道估測和等化方式 A New Full-Diversity Blind Channel Estimation and Equalization over Fast Time-Varying ISI Fading Channels |
指導教授: |
陳博現
Bor-Sen Chen |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 53 |
中文關鍵詞: | 通道估測 |
外文關鍵詞: | blind channel estimation, blind equalizer, Kalman filter |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在此研究中, 我們提出一種新的全多樣化結合演算法可應用於自調式通道估測和等化, 此演算法利用多重路徑通道之全多樣化好處來大大改善以 Kalman濾波器為基礎自調式等化器之性能。所提出全多樣化自調式等化器是以比重式高斯和 (Weighted Gaussian Sum, WGS) 技術和延伸式 (Extended) Kalman網路濾波器為基礎, 運用此延伸式 Kalman網路濾波器之預測誤差來達到最大可能性 (Maximum Likelihood, ML) 之最佳解。因此,所提出的演算法在快速時變相互干擾通道中可以同時有效的估測通道係數和傳送資料。此快速時變相互干擾通道是由一兩階自退化過程 (Autoregressive Process, AR(2)) 依照行動電話網路的 Doppler 頻率來模擬。電腦模擬結果驗證所提出的全多樣化自調式等化器可以比傳統的 Kalman 網路自調式等化器更準確的估測快速時變通道。在傳送資料的偵測方面, 所提出的全多樣化結合自調式等化器亦驗證比傳統式的 WGS-IMM (Interacting Multiple Model) 自調式等化器在位元錯誤率 (BER) 上有大幅改善。
此外, 從性能和計算複雜度的觀點來考慮, 所提出的修改版2-多樣化 (2-Diversity) 自調式等化器對於以比重式高斯和 (WGS) 為基礎的自調式等化器來說, 是一個不錯的選擇; 因所提出的2-多樣化 (2-Diversity) 自調式等化器可避免計算複雜度以指數方式增加, 使其在無線通訊應用上可行性大幅增加。
In this study, we propose a novel full-diversity combination algorithm for blind channel estimation and equalization, which takes advantage of the full-diversity gain of the multipath fading channel and executes a smoother filter operation to significantly improve the performance of the network Kalman-based blind equalizers. The proposed full-diversity blind equalizer based on the weighted Gaussian sum (WGS) technique and the network of extended Kalman filters, employs the prediction errors of network of Kalman filters to achieve the maximum likelihood (ML) solution. Therefore, the proposed algorithm can effectively estimate both the channel coefficients and the transmitted symbols over the fast time-varying inter-symbol interference (ISI) fading channels. The fast time-varying ISI fading channel is modeled by a second order autoregressive (AR(2)) process according to the Doppler frequency shift in cellular networks. Simulation results illustrate that the proposed blind equalizer based on the full-diversity combination algorithm can track the fast time-varying fading channel much more accurately than the conventional network Kalman-based blind equalizers. For symbol detection, the proposed diversity combination blind equalizers demonstrate a significant improvement compared with the conventional WGS-IMM (Interacting Multiple Model) blind equalizers in the bit error rate (BER) performance.
Besides, from the trade-off consideration between the performance and the computational complexity, the proposed modified 2-Diversity blind equalizer is a best choice for the WGS-based blind equalizer. Because the proposed 2-Diversity blind equalizer avoids the exponential growth of the computational complexity making it feasible for wireless communication systems.
[1] K. Abend and B. D. Fritchman, “Statistical detection for communication channels with intersymbol interference,” Proc. IEEE, vol. 58, no. 5, pp. 779-785, May 1970.
[2] J. G. Proakis, Digital Communications, 4th ed., McGRAW-HILL, 2001.
[3] R. A. Iltis, “A Bayesian maximum-likelihood sequence estimation algorithm for a priori unknown channels and symbol timing,” IEEE Journal Select. Area in Commun., vol. 10, no. 3, pp. 579-588, Apr. 1992.
[4] N. Seshadri, “Joint channel and data estimation using blind trellis search techniques,” IEEE Trans. Commun., vol. 42, no. 234, pp. 1000-1016, Feb./Mar./Apr. 1994.
[5] J. B. Xu and L. M. Du, “Blind maximum-likelihood sequence estimation with decision feedback,” IEEE International Conf. on Commun. Tech. Proceedings, 1998 (ICCT’98), vol. 1, pp. 154-158, 1998.
[6] J.-C. Lin, “Blind equalization technique based on an improved constant modulus adaptive algorithm,” IEE Proceeding on Commun., vol. 149, no. 1, pp. 45-50, Feb. 2002.
[7] J. M. Mendel, Lessons in Estimation Theory for Signal Processing, Communications, and Control, Prentice-Hall, 1995.
[8] R. A. Iltis, J. J. Shynk, and K. Giridhar, “Bayesian algorithms for blind equalization using parallel adaptive filtering,” IEEE Trans. Commun., vol. 42, no. 234, pp. 1017-1032, Feb./Mar./Apr. 1994.
[9] R. Amara and S. Marcos, “A network of Kalman filters for MAP symbol-by-symbol equalization,” ICASSP Istanbul, Turkey, June 2000.
[10] G.-K. Lee, S. B. Gelfand, and M. P. Fitz, “Bayesian techniques for blind deconvolution,” IEEE Trans. Commun., vol. 44, no. 7, pp. 826-835, July 1996.
[11] R. E. Lawrence and H. Kaufman, “The Kalman filter for the equalization of a digital communications channel,” IEEE Trans. Commun. Technol., vol. COMM-19, no. 6, pp. 1137-1141, Dec. 1971.
[12] A. Luvison and G. Pirani, “Design and performance of an adaptive Kalman receiver for synchronous data transmission,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-15, no. 5, pp. 635-648, Sept. 1979.
[13] B. Mulgrew and C. F. N. Cowan, “An adaptive Kalman equalizer: structure and performance,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-35, no. 12, pp. 1727-1735, Dec. 1987.
[14] S. McLaughlin, B. Mulgrew, and C. F. N. Cowan, “A performance study of three adaptive equalizers in the mobile communication environment,” in Proc. ICC, 1989, pp. 193-197.
[15] P. Grohan and S. Marcos, “Structures and performances of several adaptive Kalman equalizers,” in Proc. IEEE Workshop Digital Signal Process., Loen, Norway, pp. 454-457, Sept. 1996.
[16] J.-F. Liao, C.-L. Tsai and B.-S. Chen, “Robust Adaptive Channel Estimation and Multiuser Detection for Ultra Wideband in a Realistic Indoor Channel,” IEEE International Conference on Communications, 2005 (ICC2005), Seoul, vol. 4, pp. 2845-2851, 16-20 May 2005.
[17] R. Amara and S. Marcos, “A blind network of extended Kalman filters for nonstationary channel equalization,” IEEE International Conf. on Acoustics, Speech, and Signal Processing, 2001 (ICASSP’01), vol. 4, pp. 2117-2120, 2001.
[18] S. Marcos, “A network of adaptive Kalman filters for data channel equalization,” IEEE Trans. Signal Processing, vol. 48, no. 9, pp. 2620-2627, Sep. 2000.
[19] Z. M. Kamran, T. Kirubarajan, and A. B. Gershman, “Blind estimation and equalization of time-varying channels using the interacting multiple model estimator,” IEEE International Symposium on Circuits and Systems, 2004, (ISCAS’04), vol. 5, pp. V17-20, May 2004.
[20] B. Mulgrew, “Nonlinear signal processing for adaptive equalization and multiuser detection,” EUSIPCO 98, Rhodes, Greece, pp. 537-544, Sept. 1998.
[21] S. Chen, B. Mulgrew and P. M. Grant, “A clustering technique for digital communications channel equalization using Radial Basis Function Networks,” IEEE Trans. Neural Networks, vol. 4, no. 4, pp. 570-579, July 1993.
[22] J. Cid-Sueiro, A. Artes-Rodriguez, and A. R. Figueiras-Vidal, “Recurrent Radial Basic Function Networks for optimal symbol-by-symbol equalization,” Signal Processing, vol. 40, pp. 53-63, 1994.
[23 ]D. L. Alspach and H. W. Sorenson, “Nonlinear Bayesian estimation using Gaussian sum approximations,” IEEE Trans. Automat. Contr., vol. 17, no. 4, pp. 439-448, Aug. 1972.
[24] P. Grohan and S. Marcos, “Nonlinear channel equalizer using Gaussian sum approximations,” IEEE International Conf. on Acoustics, Speech, and Signal Processing, 1997 (ICASSP-97), vol. 3, pp. 2481-2484, 1997.
[25] H. W. Sorenson and D. L. Alspach, “Recursive Bayesian estimation using Gaussian sums,” Automatica, vol. 7, pp. 465-479, 1971.
[26] H. A. P. Blom and Y. Bar-Shalom, “The interacting multiple model algorithm for systems with Markovian switching coefficients,” IEEE Trans. Automat. Contr., vol. 33, no. 8, pp. 780-783, Aug. 1988.
[27] E. Mazor, A. Averbuch, Y. Bar-Shalom, and J. Dayan, “Interacting multiple model methods in target tracking: a survey,” IEEE Trans. Aerosp. Electron. Syst., vol. 34, no. 1, pp. 103-123, Jan. 1998.
[28] J.-F. Liao and B.-S. Chen, “Robust Mobile Location Estimator with NLOS Mitigation using Interacting Multiple Model Algorithm,” IEEE Trans. on Wireless Communications, vol. 5, no. 11, pp. 3002-3006, Nov. 2006.
[29] B.-S. Chen and J.-F. Liao, “Adaptive MC-CDMA multiple channel estimation and tracking over time-varying multipath fading channels,” IEEE Trans. on Wireless Communications, vol. 6, no. 6, pp. 2328-2337, June 2007.
[30] B.-S. Chen and J.-F. Liao, “Robust Blind Equalizer over Fast Time-Varying ISI Fading Channels,” Accepted by IEEE Globe Telecommunications Conference 2006 (Globecom’06), Nov. 2006.
[31] T. J. Lim and Y. Ma, “The Kalman filter as the optimal linear minimum mean-square error multiuser CDMA detector,” IEEE Trans. Inform. Theory, vol. 46, no. 7, pp. 2561-2566, Nov. 2000.
[32] A. M. Sayeed and B. Aazhang, “Joint multipath-Doppler diversity in mobile wireless communications,” IEEE Trans. Commun., Vol. 47, no. 1, pp. 123-132, Jan 1999.
[33] W. C. Jakes, Microwave Mobile Communications, New York: Wiley, 1974.
[34] P. H.-Y. Wu and A. Duel-Hallen, “Multiuser detectors with disjoint Kalman channel estimators for synchronous CDMA mobile radio channels,” IEEE Trans. Commun., vol. 48, no. 5, pp. 752-756, May 2000.
[35] L. Lindbom, A. Ahlen, M. Sternad, and M. Falkenstrom, “Tracking of time-varying mobile radio channels- part II: a case study,” IEEE Trans. on Commun., vol. 50, no. 1, pp. 156-167, Jan. 2002
[36] K. E. Baddour and N. C. Beaulieu, “Autoregressive modeling for fading channel simulation,” IEEE Trans. Wireless Commun., vol. 4, no. 4, pp. 1650-1662, Jul. 2005.
[37] Z. Liu, X. Ma, and G. B. Giannakis, “Space-time coding and Kalman filtering for time-selective fading channels,” IEEE Trans. Commun., vol. 50, no. 2, pp. 183-186, Feb 2002.
[38] H. Wang and P. Chang, “On verifying the first-order Markovian assumption for a Rayleigh fading channel model,” IEEE Trans. Veh. Technol., vol. 45, no. 2, pp. 353-357, May 1996.
[39] S. Haykin, Adaptive Filter Theory, 4th ed., Prentice-Hall, 2002.
[40] G. L. Stuber, Principles of Mobile Communication, Second ed., Kluwer Academic Publishers, 2001.