研究生: |
林宥婷 Lin, Yu-Ting |
---|---|
論文名稱: |
應用馬氏田口系統於醫療急救之預測 Applying MTS to Cardiopulmonary Resuscitation Prediction |
指導教授: |
蘇朝墩
Su, Chao-Ton |
口試委員: |
傅新彬
Fu, Shin-Pin 蕭宇翔 Hsiao, Yu-Hsiang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 31 |
中文關鍵詞: | 心肺復甦 、臨床警示系統 、院內心跳停止事件 、不平衡資料 、馬氏田口系統 、分類 、變項篩選 |
外文關鍵詞: | cardio-pulmonary resuscitation, clinical alert system, in-hospital cardiac arrest, imbalanced data, MTS, classification, feature selection |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
住院病人安全是醫院服務品質之重要指標,而院內心跳停止是醫療機構中常見且具高風險性的問題,會嚴重威脅住院病人安全。心肺復甦之成效關係到能否立即拯救危急瀕死之病患,與是否能提高病患急救後之出院存活率。院內臨床警示系統合併住院醫師交接班作業,可及早發現狀況不穩定之病患並給予醫療處置,能夠有效的減少院內心跳停止事件的發生。由於醫療領域資料多屬不平衡型態,而馬氏田口系統對於不平衡資料擁有較好的穩健性,且可透過篩選變項降低預測之成本與加快預測之速度,符合醫療急救的特性,因此本論文以MTS分析個案醫院之一般病房病患資料,以建立院內急救的臨床警示系統。本研究最終建立的臨床警示系統使用舒張壓、體溫、脈搏及呼吸作為變項,並以馬氏距離的臨界值作為系統的警示標準。另外,本研究也以其他常見的分類方法如類神經網路、決策樹以及邏輯斯迴歸進行分析,結果顯示MTS對於不平衡資料確實擁有較優越的分類能力。期盼本研究能夠拋轉引玉,使得MTS更廣泛地應用在醫療領域與不平衡資料問題中。
Safety of inpatients is an important index for service quality of hospital. In-Hospital Cardiac Arrest (IHCA) is a common and high risk problem for medical institutions. The effect of Cardio-Pulmonary Resuscitation (CPR) is related to if it could save dying patients immediately and if it could increase the survival rate of patients given first aid afterward. It could discover unstable patients early and provide them medical care if we combine clinical alert system (CAS) and residents' working shifts; also, it could reduce IHCA event. Because most of the data in medical field is imbalanced data type; in addition, there is a better robustness for imbalanced data in MTS, this paper aims to analyze the data of patients in ordinary ward of case study hospital by MTS method in order to build up CAS for IHCA. After we selected the system features: diastolic blood pressure, Temperature, Pulse rate and Respiratory rate, we used the Mahalanobis-distance to be the alert standard of system. Moreover, three commonly used classification method: artificial neural network, decision tree and logistic regression, are implemented using the same data set. The result showed that there is a better classification rate in MTS for imbalanced data type.
[1] 邱俊仁、程俊傑、吳鋼治、邱浩彰、楊國卿、侯勝茂 (2012)。院內心肺復甦(CPR) 之成效。臺灣醫學,16(1),34-39。
[2] 邱俊仁、徐國基、吳鋼治、邱浩彰、楊國卿、侯勝茂等 (2014)。以醫療品質突破系列提昇院內心跳停止事件急救之照護品質。臺灣醫學,8(2),226-237。
[3] 財團法人醫院評鑑暨醫療品質策進會:2013 年度醫療品質突破系列—拯救生命大作戰—提升院內心跳停止照護品質說明。臺北,醫策會,2013。
[4] 李宜恭:院內心跳停止事件基本概念及指標介紹。財團法人醫院評鑑暨醫療品質策進會2013年院內心跳停止事件(IHCA)研討會講義。臺北,醫策會,2013。
[5] Su, C. T., & Hsiao, Y. H. (2007). An evaluation of the robustness of MTS for imbalanced data. Knowledge and Data Engineering, IEEE Transactions on, 19(10), 1321-1332.
[6] Berry, M. J., & Linoff, G. (1997). Data mining techniques: for marketing, sales, and customer support. John Wiley & Sons, Inc..
[7] 簡禎富(2014)。資料挖礦與數位決策。資料挖礦課程講義。新竹:國立清華大學工業工程與工程管理學系。
[8] 林耀新(2009)。應用馬氏田口系統於醫療診斷-以術中壓瘡為例。清華大學工業工程與工程管理學系學位論文,1-72.
[9] Han, J., Kamber, M., & Pei, J. (2006). Data mining: concepts and techniques. Morgan kaufmann.
[10] 蘇朝墩譯(2013)。品質工程:線外方法與應用。台北:前程文化。
[11] Taguchi, G., Wu, Y., & Chodhury, S. (2000). Mahalanobis-Taguchi
System. McGraw-Hill Professional.
[12] 國泰綜合醫院(2014)。醫院簡史。2014年5月25日,取自:
http://www.cgh.org.tw/tw/content/about_us/index.html
[13] Taguchi, G., & Jugulum, R. (2002). The Mahalanobis-Taguchi strategy: A
pattern technology system. John Wiley & Sons.
[14] 海南省人民醫院(2014)。醫政工作。2014年5月27日,取自:
http://www.phhp.com.cn/x_lyglwz1.php?xuh=17987
[15] Morgan, R. J. M., Williams, F., & Wright, M. M. (1997). An early warning
scoring system for detecting developing critical illness. Clin Intensive
Care, 8(2), 100.
[16] Subbe, C. P., Kruger, M., Rutherford, P., & Gemmel, L. (2001). Validation
of a modified Early Warning Score in medical admissions. Qjm, 94(10), 521-
526.
[17] Stenhouse, C., Coates, S., Tivey, M., Allsop, P., & Parker, T. (2000).Prospective
evaluation of a modified Early Warning Score to aid earlier detection of patients
developing critical illness on a general surgical ward. British Journal of
Anaesthesia, 84(5), 663-663.
[18] Subbe, C. P., Davies, R. G., Williams, E., Rutherford, P., & Gemmell, L. (2003).
Effect of introducing the Modified Early Warning score on clinical outcomes,
cardio‐pulmonary arrests and intensive care utilisation in acute medical
admissions. Anaes-thesia 58(8), 797-802.