研究生: |
吳玉忻 Wu, Yu Hsin |
---|---|
論文名稱: |
利用斜向入射與藍寶石晶體提升X光共振腔輸出頻譜效率與能量解析度之研究 The improvement of hard X-ray resonators in efficiency and energy resolution using inclined incidence geometry and sapphire crystals |
指導教授: |
張石麟
Chang, Shih Lin |
口試委員: |
蘇雲良
傅建中 湯茂竹 黃玉山 |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2015 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 105 |
中文關鍵詞: | X光 、共振腔 、斜向入射 、藍寶石 |
外文關鍵詞: | inclined incidence |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用晶體繞射作為反射機制之X光共振腔於1967年提出,由於實驗有賴高能量解析度之光源以及樣品製程之困難,直至2005年才首次觀察到X光Fabry–Pérot共振腔之干涉條紋:利用高能量解析單光儀(high resolution monochromator,HRM)於能量14.4388 keV時產生能量解析度為0.36 meV之X光,量測Si(12 4 0)布拉格背向繞射在共振腔之輸出頻譜。但由於矽晶體之鑽石結構特性,使得多光繞射無法避免,輸出頻譜不盡理想。為提升X光Fabry–Pérot共振腔之實用性,本論文提出兩種方式改善晶體製成之共振腔所遇到之困難:
1. 使用藍寶石(Al2O3)取代矽(Si)作為共振腔之繞射材料:藍寶石之結構為hexagonal,在能量E=14.3148 keV時,背向繞射(0 0 0 30)僅為兩光繞射,少了多光繞射之干擾,預期可提升晶體反射率以及輸出頻譜之能量解析度。
2. 斜向入射X光Fabry–Pérot共振腔:由於晶體繞射之機制很容易遇到多光繞射之問題,我們利用光之可逆性,將入射光利用複繞射面直接反射回晶體,這種方式可減少晶體吸收,以提升反射率以及共振效率。
根據模擬以及實驗結果分析,此兩種方式對於改善共振腔之效率以及能量解析度有顯著之效果,而斜向入射共振腔之效果更為突出,僅透過入射路徑之改變,可使相同結構之共振腔在共振效率(peak efficiency)上提升大約30倍,大幅提升了晶體製程之X光Fabry–Pérot共振腔之實用性。我們可將斜向入射之機制應用於不同能量與不同材料上,期待此元件在未來能應用於高能量解析X光之相關領域研究。
Hard X-ray Fabry–Pérot resonators using Bragg-back-reflection has been proposed and explored since 1967. The ideas were brought into effect until 2005 when Chang et al. directly observed cavity resonance fringes in a Si crystal with the size of 40~150 μm. The performance of cavities using Si (12 4 0) back diffraction at 14.4388 keV with energy resolution ΔE of 0.36 meV was barely satisfactory for the intrinsic limits of crystal –based resonators from crystal absorption and 24-beam diffractions.
In this thesis, we proposed two models of resonators to improve the practicability of hard X-ray resonators:
(1) Using Al2O3 ( 0 0 0 30) back diffraction for X-ray resonators at 14.3148 keV: For its less absorption and hexagonal structure, the resonator of sapphire crys-tals underwent a pure 2-beam diffraction which could enhance the resonance interference and improve finesse compared with the one of silicon crystals.
(2) Hard X-ray resonators with inclined-incidence geometry:
Utilizing one of the multiple diffractions as incident beam to generate back dif-fraction in a crystal cavity for resonance and demonstrate FP resonance with ul-trahigh efficiency, highly purified resolving power in the sub-meV range and low background.
Both the experimental results show clear resonance fringes for the enhance-ment in Finesse and peak efficiency, especially for the inclined incidence, only by changing the path of incidence, the visibility was enhanced nearly 30 times than normal incidence. The compact-sized resonator with these promising fea-tures can be widely implemented to different energies and materials and antici-pated to apply to ultrahigh-resolution X-ray optics for X-ray diffraction, spec-troscopy, and imaging applications.
[1] W. L. Bond, M. A. Duguay, and P.M. Rentzepis, “Proposed resonator for an X-ray laser,” Appl. Phys. Lett. 10,216–218 (1967).
[2] S.-L. Chang, Yu. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, and T. Ishikawa, “X-ray resonance in crystal cavities: realization of Fabry-Perot reso-nator for hard x rays,” Phys. Rev. Lett. 94, 174801 (2005).
[3] S.-L. Chang, Yu. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: a diffraction experiment,” Phys. Rev. B 74,134111 (2006).
[4] S.-L. Chang, X-ray Multiple-Wave Diffraction: Theory and Application (Springer, 2004).
[5] International Tables of Crystallography, Vol.3 3rd edition (IUCr, 2004).
[6] J. Als-Nielsen and D. McMorrow, Elements of Modern X-ray Physics (Wiley, 2001).
[7] A. Authier, Dynamical Theory of X-Ray Diffraction (Oxford University Press, 2001).
[8] B. W. Batterman and H. Cole, “Dynamical Diffraction of X Rays by Perfect Crystals,” Rev. Mod. Phys. 36, 681-717 (1964).
[9] J. D. Jackson, Classical Electrodynamics, 3rd edition (Wiley, 1999).
[10] Y. P Stetsko and S.-L. Chang, “An algorithm for solving multiple-wave dynam-ical X-ray diffraction equations,” Acta Cryst. A53, 28-34 (1997).
[11] Y.-Y. Chang, Y.-W. Tsai, Y.-H. Wu, M.-T. Tang and S.-L. Chang, “Dynamical diffraction effect in a curved multiple-plate crystal cavity,” Acta Cryst. A68, 729-735 (2012).
[12] 張櫻議, “X光曲面共振腔在背向繞射下的異常聚焦之研究,” 國立清華大學物理系博士論文(2011).
[13] Yu. V. Shvyd’ko, X-Ray Optics: High-Energy-Resolution Applications (Springer, 2004).
[14] M. Hart, “Bragg reflection x ray optics,” Rep. Prog. Phys. 34, 435 (1971).
[15] K. Kohra and T. Matsushita, “Some characteristics of dynamical diffraction at a Bragg angles of about π/2,” Z. Naturforsch. A 27, 484-487 (1972)
[16] O. Brümmer, H. R. Höche and J. Nieber, “X-ray diffraction in the Bragg case at Bragg angles of about π/2,” Phys. Stat. Solidi(a) 53, 565.
[17] A. Caticha and S. Caticha-Ellis, “Dynamical theory of x-ray diffraction at Bragg angles near π/2,” Nucl. Instrum. Methods Phys. Res. 195,97 (1982).
[18] W. Graeff and G. Materlik, “Millielectron volt energy resolution in Bragg backscattering,” Phys. Rev. B 25, 971–983 (1982).
[19] V.I. Kushnir and E.V. Suvorov, “On the utilization of backscattering (2θ ≈ π) for bright x-ray optics design,” Nuclear Instruments and Methods in Physics Re-search A282, 539-541 (1989).
[20] C. Cusatic, D. Udron, I. Mazzaro, C. Giles and H. Tolentino,“X-ray Back dif-fraction profiles with a Si (111) plate,” Acta Cryst. A52, 614-620(1996).
[21] Yu. V. Shvyd’ko, E. Gerdau, J. Jäschke, O. Leupold, M. Lucht and H. D. Rüter, “Exact Bragg backscattering of x-rays,” Phys. Rev. B 57,4968(1998).
[22] C. Fabry and A. Pérot, “Théorie et applications d´une nouvelle methode de spec-troscopie interférentielle,“ Ann. Chim. Phys. 16, 115–146 (1899).
[23] J. M. Vaughan, The Fabry-Perot Interferometer: History, Theory, Practice and Applications (Taylor & Francis, 1989).
[24] N. M. Ceglio, D. P. Gaines, J. E. Trebes, R. A. London, and D. G. Stearns, “Time-resolved measurement of double-pass amplification of soft x rays,” Appl. Opt. 27, 5022–5025 (1988).
[25] R. D. Deslattes, “X-ray monochromators and resonators from single crystals,” Appl. Phys. Lett. 12, 133–135 (1968).
[26] A. Steyerl and K.-A. Steinhauser, “Proposal of a Fabry-Perot-type interferometer for X-rays,” Z. Phys. B 34, 221–227 (1979).
[27] R. Colella and A. Luccio, “Proposal for a free electron laser in the X-ray region,” Opt. Commun. 50, 41–44(1984).
[28] A. Caticha and S. Caticha-Ellis, “A Fabry-Perot interferometer for hard X-rays,” Phy. Status Solidi A 119, 643–654 (1990).
[29] S. Kikuta, Y. Imai, T. Iizuka, Y. Yoda, X.-W. Zhang, and K. Hirano, “X-ray dif-fraction with a Bragg angle near π/2 and its applications,” Journal of synchrotron radiation 5, 670–672 (1998).
[30] K.-D. Liss, R. Hock, M. Gomm, B. Waibel, A. Magerl, M. Krisch and R. Tu-coulou, “Storage of x-ray photons in a crystal resonator,” Nature 404, 371 (2000).
[31] V. G. Kohn, Yu. V. Shvyd’ko, and E. Gerdau, “On the theory of an X-ray Fab-ry-Perot interferometer,” Phys. Status Solidi B 221, 597–615 (2000).
[32] Yu. V. Shvyd’ko, M. Lerche, H.-C. Wille, E. Gerdau, M. Lucht, H. D. Rüter, E. E. Alp, and R. Khachatryan, “X-ray interferometry with microelectronvolt reso-lution,” Phys. Rev. Lett. 90, 013904 (2003).
[33] Yu. V. Shvyd’ko, E. Gerdau, M. Lerche, H.-C. Wille, E. E. Alp and P. Bexker, “Sapphire X-ray resonator. First experience and results,” Hyp. Interact . (c) 5, 25-28 (2003).
[34] E. Hecht, Optics, 4th edition(Addison Wesley,2002).
[35] John P. Sutter, E. Ercan Alp, Michael Y. Hu, Peter L. Lee, Harald Sinn, Wolf-gang Sturhahn, and Thomas S. Toellner, “Multiple-beam X-ray diffraction near exact Backscattering in silicon,” Phys. Rev. B 63,094111 (2001).
[36] M.-S. Chiu, Yu. P. Stetsko and S.-L. Chang, “Dynamical calxulation for x-ray 24 beam diffraction in a 2-plate crystal cavity of silicon,” Acta Cryst. A64, 304-403(2008).
[37] X. R. Huang, D. P. Siddons, A. T. Macrander, R.W. Peng, and X. S. Wu, “Mul-ticavity X-ray Fabry-Perot resonance with ultrahigh resolution and contrast,” Phys. Rev. Lett. 108, 224801 (2012).
[38] 黃亮諭,“藍寶石X光共振腔之可行性研究,” 國立清華大學物理系碩士論文(2009).
[39] 邱茂森,“X光共振腔之24光動力繞射計算,” 國立清華大學物理系博士論文(2008).
[40] Y.-H.Wu, Y.-W. Tsai, C.-H. Chu, W.-C. Liu, Y.-Y. Chang, and S.-L. Chang, “Inclined-incidence hard-X-ray resonator with ultrahigh efficiency and resolu-tion,” Opt. Express 23, 232934 (2015).
[41]http://www.spring8.or.jp/wkg/BL12XU/instrument/lang/INS-0000000567/instrument_summary_view
[42] M. Yabashi, K. Tamasaku, S. Kikuta, and T. Ishikawa, “X-ray monochromator with an energy resolution of 8 × 10−9 at 14.41 keV,” Rev. Sci. Instrum. 72,4080–4083 (2001).
[43] J. W. M. DuMond, “Theory of the use of more than two successive x-ray crystal reflections to obtain increased resolving power,” Phys. Rev. 52,872-883 (1937).
[44]許正興,半導體製程技術. http://web.nuu.edu.tw/~hsuch/download/semiconductor_technology3.pdf
[45] Y.-H. Wu , Y.-W. Tsai, Y.-Y. Chang, C.-H. Chu, D. G. Mikolas, C.-C. Fu, and S.-L. Chang, “Hard X-Ray Resonance in Sapphire Crystal Cavities Using Back Diffrac-tion”, American Physical Society March Meeting, Boston (2012).
[46] P.-C. Chen, P.-T. Lin, D. G. Mikolas, Y.-W. Tsai, Y.-L. Wang, C.-C. Fu and S.-L. Chang, “Bulk vertical micromachining of single-crystal sapphire using inductively coupled plasma etching for X-ray resonant cavities”, J. Micromech. Microeng. 25, 015016 (2015).
[47] S.-L. Chang, Y.-H. Wu, Y.-W. Tsai, W.-C. Liu, Y.-Y. Chang, S.-L. Chen, “Inclined In-cidence Hard X-Ray Resonators as High-Resolution Beam Conditioners for X-Ray Optics”, International Conference on Synchrotron Radiation Instrumentation SRI 2015, New York (2015).