研究生: |
李源欽 Lee, Yuan Chin |
---|---|
論文名稱: |
應用在雷射直寫微影的光學頭之研究 Study of the optical pickup head for direct laser writing lithography |
指導教授: |
趙煦
Chao, Shiuh |
口試委員: |
呂宗熙
Liu, Tzong Shi 余興政 Yu, Hsing Cheng 施錫富 Shih, Hsi Fu 李夢麟 Li, Meng Lin |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 86 |
中文關鍵詞: | 光學頭 、雷射直寫微影 、致動器 、物鏡 、推挽法 、聚焦伺服 、共焦 、無機光阻 、有機光阻 |
外文關鍵詞: | Optical pickup head, Direct laser writing lithography, Actuator, Objective lens, Push-pull method, Focusing servo, Confocal, Inorganic photoresist, Organic photoresist |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在研究如何設計及應用光學頭做為雷射直寫微影製程的光源。一般商用光學頭很難被應用在雷射直寫微影製程,主要原因有二,首先,一般光學頭的致動器因為使用6條銅線懸吊機構,造成水平方向的剛性不足。其次,光學頭連續聚焦伺服的能量可能會造成點與點之間光阻不必要的曝光。
為解決上述問題。首先,本論文提出一個特殊的單軸致動器設計,利用2個3臂式黃銅彈片結合物鏡承載機構使得致動器水平方向的剛性大幅強化。在實際完成致動器製作後,由於物鏡的工作距離僅有0.56 mm,很難量測該致動器水平方向的穩定性。為此,我們提出原創的修正式推挽法(Modified push-pull method)克服此問題。實驗結果顯示,致動器在水平面兩個垂直方向的偏擺量都在2 nm以下。其次,為了解決聚焦伺服光會曝光光阻的問題,本論文提出一個使用405 nm及650 nm兩種光源的雙波長光學頭設計,405 nm波長做為曝光光源,而650 nm波長則做為聚焦伺服光,該系統使用數值孔徑0.85的藍光物鏡,並且兩種波長的聚焦光點共焦。相關的共焦調整步驟,論文中也會詳細說明。另外,該光學頭設計為可以曝光有機光阻與無機光阻,有鑑於無機光阻為熱敏感材料,因此,建議兩個波長的聚焦光點應該相距至少1.58 um,以避免650 nm光點的能量影響405 nm光點的曝光過程。關於曝光實驗,使用工研院開發的GeSbSnO無機光阻與永光化學所生產的EPG 512有機光阻塗佈於4吋矽晶圓測試,其中無機光阻膜厚65 nm,最小曝光光點直徑為0.19 um。有機光阻模厚為1 um,全穿透最小曝光光點直徑為0.52 um。半穿透最小曝光光點直徑0.29 um,曝光深度0.24 um。由曝光結果顯示,前述共焦調整步驟是有效且準確的,並且該雙波長光學頭確實可以應用在次微米尺度的雷射直寫微影製程。
The purpose of this dissertation is to design and implement an optical pickup head to be the light source for direct laser writing lithography. It is difficult to use the commercial optical pickup head as the light source for direct laser writing lithography due to two reasons. Firstly, the lateral stability of the actuator of the optical pickup head is not good since it adopts the six-wired suspension structure. Secondly, the optical power from continuous focusing servo of the optical pickup head may expose the photoresist between two successive exposed spots.
To solve the first problem, a special design of a single-axial actuator was proposed. By using two planar springs with three-armed structure, the lateral stability of the actuator was improved. For solving the difficulty of the measurement of the lateral stability of the actuator while the focusing servo is activated, the original “modified push-pull method” was proposed. The measurement results showed that the lateral jitters of the actuator in two orthogonal directions were less than 2 nm. To solve the second problem, a new design of the dual-wavelength optical pickup head with both 405 nm and 650 nm wavelengths was proposed and implemented. The 405 nm beam was used to expose the photoresist, including inorganic and organic photoresists, while the 650 nm beam was used to execute the focusing servo. Numerical aperture of the objective lens was 0.85 at 405 nm. Both focused spots of the two beams by the objective lens were confocal and the detailed procedure of the confocal adjustment was also given. However, since the inorganic photoresist is heat sensitive, we suggest the two focused spots should be separated by at least 1.58 m to prevent from the optical power of the 650 nm spot affecting the exposure of the inorganic photoresist. Finally, the dual-wavelength optical pickup head with the single-axial actuator was used to expose both GeSbSnO inorganic photoresist and EPG 512 organic photoresist. The photoresist was coated on a 4” Si wafer and was spin with the linear velocity of 1 m/s. For the exposure of GeSbSnO photoresist, the minimum diameter of the pierced exposed spots was 0.19 um with 65 nm in depth. For the exposure of EPG512 photoresist, the minimum diameter of the pierced exposed spots was 0.52 um with 1um in depth. Besides, exposed spots with diameter of 0.29 um and with 0.24 um in depth were obtained. The exposure results showed that the procedure of the confocal adjustment was effective, and the dual wavelength optical pickup head was suitable to be used as the light source to expose those devices with feature size near 1 um or below.
1. K.-C. Fan, C.-L. Chu and J.-I Mou, “Development of a low-cost autofocusing probe for profile measurement,” Meas. Sci. Technol. 12, 2137–2146 (2001).
2. K.-C. Fan, C.-L. Chu, J.-L. Liao and J.-I Mou,” Development of a high-precision straightness measuring system with DVD pick-up head,” Meas. Sci. Technol. 14, 47–54, (2003).
3. E.-T. Hwu, K.-Y. Huang, S.-K. Hung and I.-S. Hwang, “Measurement of Cantilever Displacement Using a Compact Disk/Digital Versatile Disk Pickup Head,” Jpn. J. Appl. Phys. 45, 2368–2371 (2006).
4. J. A. Ferrari, E. Frins, and G. Ayubi, “Application of DVD/CD pickup optics to microscopy and fringe projection,” Am. J. Phys. 78, 603-607 ( 2010)
5. Y.-C. Lee and S. Chao,” A Compact and Low-Cost Optical Pickup Head-Based Optical Microscope,” IEEE Trans. On Magnetics 50, 3501304 (2014)
6. A. Kasukurti, M. Potcoava, S.A. Desai, C. Eggleton and D. W. M. Marr1,” Single-cell isolation using a DVD optical pickup,” Optics Express 19, 10379-10386 (2011)
7. K. Kurihara, T. Nakano, H. Ikeya, M. Ujiie and J. Tominaga, “High-speed fabrication of large-area nanostructured optical devices,” Microelectronic Engineering 85, 1197-1201 (2008).
8. C.-T. Yang, M.-F. Hsu, S.-L. Chang, J.-P. Chen, T.-R. Jeng and K.-C. Chiu, “Spin Coatable Inorganic Resist for High Density Disk Mastering Process Application,” Jpn. J. Appl. Phys. 47, 6023-6024 (2008).
9. Y.-C. Lee, S. Chao, C.-C. Huang, S.-C. Chen and C.-T. Cheng, ”A Compact Dual-wavelength Optical Head for Photolithography,” Conference on Lasers and Electro-Optics Pacific Rim, WPE-17 (2013)
10. E. Ito, Y. Kawaguchi, M. Tomiyama, S. Abe, and E. Ohno, “Phase Transition Mastering Technology for the Stamper of Blu-ray Recordable Disc,” Jpn. J. Appl. Phys. 50, 09MD01 (2011).
11. K. Kurihara, T. Nakano, H. Ikeya, M. Ujiie, and J. Tominaga, “High-speed fabrication of large-area nanostructured optical devices,” Microelectronic Engineering 85, 1197-1201 (2008).
12. Y. Usami, T. Watanabe, Y. Kanazawa, K. Taga, H. Kawai, and K. Ichikawa, “405nm Laser Thermal Lithography of 40 nm Pattern Using Super Resolution Organic Resist Material,” Applied Physics Express 2, 126502 (2009).
13. C. A. Rothenbach, M. C. Gupta, “High resolution, low cost laser lithography using a Blu-ray optical head assembly,“ Optics and Lasers in Engineering 50 (2012) 900–904
14. Y.-C. Lee, S. Chao, C.-C. Huang and K.-C. Cheng, “A compact optical pickup head in blue wavelength with high horizontal stability for laser thermal lithography,” Opt. Express 21, 23556-23567 (2013).
15. Y.-C. Lee, S. Chao, C.-C. Huang and C.-T. Yan, “Design of a Dual-Wavelength Optical Head for Submicron-Scale and Nano-Scale Lithography,” IEEE Trans. on Magnetics, 47, 696-700 (2011)
16. Y.-C. Lee, S. Chao, C.-C. Huang and C.-T. Yang, “Fabrication of a Dual-wavelength Optical Pickup Head for Laser Direct Writing,” IQEC/CLEO Pacific Rim, Sydney, Australia (2011)
17. A. B. Marchant, Optical Recording: A Technical Overview (Addison-Wesley, 1990), Chap. 7.
18. G. Bouwhuis, J. Braat, A. Huijser, J. Pasman, G. van Rosmalen, and K. S. Immink, Principle of Optical Disc Systems (Adam Hilger Ltd., 1985), Chap. 1.
19. ECMA International, Standard ECMA-338: 80 mm (1,46 Gbytes per side) and 120 mm (4,70 Gbytes per side) DVD Re-recordable Disk (DVD-RW) 2002, Chap. 12
20. M. Kuwahara, C. Mihalcea, N. Atoda, J. Tominaga, H. Fuji, T. Kikukawa, “Thermal lithography for 0.1 m pattern fabrication,” Microelectronic Engineering 61-62, 415-421 ( 2002)
21. C.-H. Chu, C.-D. Shiue, H.-W. Cheng, M.-L. Tseng, H.-P. Chiang, M. Mansuripur, and D.-P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express 18, 18383-18393 (2010).
22. M. Kuwahara, J. Kim, D. Yoon, J. Tominaga, “Nanoscale Dots Fabrication by Volume Change Thermal Lithography Optimization of Ge--Sb--Sn--O Films for Thermal Lithography of Submicron Structure,“ Jpn. J. Appl. Phys. 43, 1045 (2004).
23. http://www.himt.de/
24. http://www.qdusa.com/
25. http://www.sony.net/SonyInfo/News/Press_Archive/200408/04-0831E/
26. B. E.A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, Inc. 1991), Chap. 3
27. Blu-ray Disc Association, System Description Blu-ray Disc Format: part 1.Basicl Format Specifications, 2002, Chap. 2.
28. ECMA International, Standard ECMA-267: 120 mm DVD – Read – Only Disk, 3rd Edition, 2001, Chap. 9
29. M. Kuwahara, C. Mihalcea, N. Atoda, J. Tominaga, H. Fuji and T. Kikukawa,” A Thermal Lithography Technique Using a Minute Heat Spot of a Laser Beam for 100 nm Dimension Fabrication,” Optical Nanotechnologies-Topics in Applied Physics 88, 79-87 (2003)
30. E. Ito, Y. Kawaguchi, M. Tomiyama, S. Abe and E. Ohno, “TeOx-BasedFilm for Heat-Mode Inorganic Photoresist Mastering,” Jpn. J.Appl. Phys. 44, 3574-3577 (2005)
31. K. Kurihara , Y. Yamakawa , T. Shima, T. Nakano, M. Kuwahara and J. Tominaga, “High-Speed Fabrication of Super-Resolution Near-Field Structure Read-Only Memory Master Disc using PtOx Thermal Decomposition Lithography,” Jpn. J. Appl. Phys. 45, 1379-1382 (2006).
32. K. Kurihara, Y. Yamakawa, T. Nakano and J. Tominaga, “High-speed optical nanofabrication by platinum oxide nano-explosion– all dry- fabrication,” IEEE/LEOS Optical MENS 2005 International Conference on Optical MENS and Their Applications, 145-146 (2005).
33. C.-T. Yang, C.-Y. Chen, C.-C. Huang, Y.-C. Lee, S.-C. Chen and C.-T. Cheng, “Single Wavelength Blue-Laser Optical Head-Like Opto-Mechanical System for Turntable Thermal Mode Lithography and Stamper Fabrication,” IEEE Transactions on Magnetics 50, 701-705 (2013)
34. R.-Y. Tsai, J.-P. Chen, Y.-C. Lee, C.-C. Huang, T.-T. Huang, H.-C. Chiang, C.-M. Cheng, F.-H. Lo, S.-L. Chang, K.-Y. Weng, L.-P. Chung, J.-C. Chen, and G. Tiao, ”Position-addressable digital laser scanning point fluorescence microscopy with a Blu-ray disk pickup head,” Biomedical Optics Express 5, 427-438 (2014)
35. J. E. Korda, “Standing Waves in Photoresists,” Applied Optics 9, 969–970 (1970).
36. C. A. Mack, “Analytical Expression for Standing Wave Intensity in Photoresist,” Applied Optics 25, 1958-1961 (1986).
37. E. J. Walker, ”Reduction of photoresist standing-wave effects by post-exposure bake,” IEEE, Trans. On Electron devices 22, 464-466 (1975).
38. G. E. Fuller and Y.-C. Lin, U.S. Patent 4557797 (Dec. 10, 1985).
39. M. H. Freeman, Optics (Butterworths, 1990), Chap. 13
40. Y. Usami, T. Watanabe, Y. Kanazawa, K. Taga, H. Kawai, and K. Ichikawa, “405nm Laser Thermal Lithography of 40 nm Pattern Using Super Resolution Organic Resist Material,” Applied Physics Express 2, 126502 (2009)