研究生: |
魏晨祐 Wei, Chen-You |
---|---|
論文名稱: |
電感式耦合三氟化氮/氬氣電漿放電流體模型數值模擬分析研究 Fluid Model Numerical Simulation Study of Inductively Coupled Nitrogen trifluoride/Argon Plasma Discharges |
指導教授: |
柳克強
Leou, Keh-Chyang |
口試委員: |
張家豪
Chang, Chia-Hao 李志浩 Lee, Chih-Hao |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2022 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 165 |
中文關鍵詞: | 電感式耦合電漿源 、三氟化氮/氬氣電漿 、二維軸對稱流體模型 、蝕刻製程 、表面清潔 、電漿 |
外文關鍵詞: | Inductively coupled plasma source, Nitrogen trifluoride/Argon plasma, 2D axisymmetric fluid model, Etching process, Surface cleaning, Plasma |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電漿在半導體製程中有很廣泛的應用,在近年先進的製程中,隨著元件尺寸逐漸縮小,電漿相關的製程也越發重要,而電感式耦合電漿源(Inductively coupled plasma source, ICP)近年來已經被普遍地使用於半導體製程中,此外三氟化氮(Nitrogen trifluoride, NF3)常被當作蝕刻氣體,其原因為NF3能夠有效的分解成氟自由基,且所有的反應產物都具揮發性,能避免汙染或在腔體內形成聚合物。在NF3中混合Ar,能夠平衡反應產生的大量負離子,並使放電更加穩定,且產生的電漿更加均勻,在半導體製程上添加更多優勢。
本研究使用商業用模擬軟體CFD-ACE+來進行模擬,使用CFD-ACE+內建資料庫,其中共考慮了二十種粒子及一百二十七條反應式,並以電感式耦合電漿源為模型腔體,建立一個二維軸對稱流體模型,模擬NF3混合Ar電漿的放電行為。
在吸收功率為1200 W,氣壓10 mTorr,NF3比例為1.25%時,電子密度約為1E16 1/m3,分解產生的氟原子附著電子,使得電子密度偏低,氟原子為最主要的自由基,在腔體表面可以得到均勻的氟原子通量,其值約為1.3E-8 kg/(m2×s)。在改變吸收功率的情況下,隨著功率吸收的上升,電子密度和電子溫度也跟著增加。當吸收功率增加,分解出更多氟原子,氟原子通量也跟著增加。本論文以1.25%、10%和30%三種不同比例的NF3電漿分析其特性,隨著NF3比例的增加,電子因附著反應而下降,氟原子通量因NF3比例而增加。在調整氣壓的情況下,當氣壓降低時,腔體內氣體較容易擴散,氟原子密度相較於高氣壓變得較均勻,到達腔體表面的氟原子通量也隨之增加。
Plasma is widely used in semiconductor manufacturing processes. In recent years, in advanced manufacturing processes, as the size of components gradually shrinks, plasma-related processes are becoming more and more important. Inductively coupled plasma source (ICP) In recent years, it has been widely used in the semiconductor manufacturing process. In addition, Nitrogen trifluoride (NF3) is often used as an etching gas. The reason is that NF3 can be effectively decomposed into fluorine radicals, and all reaction products have volatile to avoid contamination or polymer formation in the cavity. Mixing Ar in NF3 can balance the large number of negative ions generated by the reaction, make the discharge more stable, and the generated plasma more uniform, adding more advantages to the semiconductor process.
In this study, the commercial simulation software CFD-ACE+ was used to simulate, using the CFD-ACE+ built-in database, which considered a total of 20 particle and 127 reaction formulas, and used the inductively coupled plasma source as the model cavity to establish a two-dimensional axisymmetric fluid model to simulate the discharge behavior of NF3 mixed Ar plasma.
When the absorbed power is 1200 W, the pressure is 10 mTorr, the NF3 ratio is 1.25%, the electron density is about 1×1016 1/m3, and the fluorine atoms produced by decomposition attach electrons so that the electron density is low, and the fluorine atoms are the most important free radicals, and the uniform fluorine atomic flux can be obtained on the surface of the cavity, and its value is about 1.3×10-8 kg/(m2×s). In the case of changing the absorbed power, as the power absorption increases, the electron density and electron temperature also increase. When the absorption power increases, more fluorine atoms are decomposed, and the fluorine atom flux also increases. In this paper, the properties of NF3 plasma in three different ratios of 1.25%, 10%, and 30% were analyzed, and as the NF3 ratio increased, electrons decreased due to the attachment reaction, and the fluorine atomic flux increased due to the NF3 ratio. In the case of adjusting the pressure, when the pressure is reduced, the gas in the cavity is more easily diffused, the density of fluorine atoms becomes more uniform compared with the high pressure, and the flux of fluorine atoms reaching the surface of the cavity also increases.
[1] M. G. Blain, T. L. Meisenheimer, and J. E. Stevens, "Role of nitrogen in the downstream etching of silicon nitride", Journal of Vacuum Science & Technology A 14, 2151 (1996)
[2] J. G. Langan, S. E. Beck, B. S. Felker, and S. W. Rynders, "The role of diluents in electronegative fluorinated gas discharges ",Journal of Applied Physics 79, 3886 (1996)
[3] Miyako Matsui, Tatehito Usui,1, and Kenichi Kuwahara, "Mechanism of highly selective etching of SiCN by using NF3/Ar-based plasma", Journal of Vacuum Science & Technology A 39, 043008 (2021)
[4] N. Posseme, V. Ah-Leung, and O. Pollet, "Thin layer etching of silicon nitride: A comprehensive study of selective removal using NH3 /NF3 remote plasma", Journal of Vacuum Science & Technology A 34, 061301 (2016)
[5] B. E. E. Kastenmeier, P. J. Matsuo, and G. S. Oehrlein, "Remote plasma etching of silicon nitride and silicon dioxide using NF3 /O2 gas mixtures", Journal of Vacuum Science & Technology A 16, 2047 (1998)
[6] D.J. Kim, Y.B. Yun, J.Y. Hwang, N.-E. Lee, K.S. Kim, G.H. Bae, "Role of N2 during chemical dry etching of silicon oxide layers using NF3/N2/Ar remote plasmas", Microelectronic Engineering 84, 560–566 (2007)
[7] J. G. Langan, S. W. Rynders, B. S. Felker, and S. E. Beck, "Electrical impedance analysis and etch rate maximization in NF3 /Ar discharges", Journal of Vacuum Science & Technology A 16, 2108 (1998)
[8] Shuo Huang, Vladimir Volynets, James R. Hamilton, Sang Ki Nam, In-Cheol Song, Siqing Lu, Jonathan Tennyson, and Mark J. Kushner, "Downstream etching of silicon nitride using continuous-wave and pulsed remote plasma sources sustained in Ar/NF3/O2 mixtures", Journal of Vacuum Science & Technology A 36, 021305 (2018)
[9] 徐彌迦,"電漿吸收探針射頻鞘層數值模擬模型之微波計算分析研究",碩士論文,工程與系統科學系,國立清華大學,新竹市, (2021)
[10] Shuo Huang, Vladimir Volynets, James R. Hamilton, Sangheon Lee, In-Cheol Song, Siqing Lu, Jonathan Tennyson, and Mark J. Kushner, "Insights to scaling remote plasma sources sustained in NF3 mixtures", Journal of Vacuum Science & Technology A 35, 031302 (2017)
[11] "QuantemolDB " https://www.quantemoldb.com/"
[12] "LXCat " https://fr.lxcat.net/home/"
[13] CFDRC, "CFD-ACE+ V2020.0 Manual_Plasma Module", ESI Group, 1388-1392 (2020)
[14] CFDRC, "2019_ESI_ACE+_PlasmaTraining_Introduction_New" ESI Group, (2019)
[15] K. Tachibana, " Excitation of the 1s5, 1s4, 1s3, and 1s2 levels of argon by low-energy electrons", Phys. Rev. A 34, 1007-1015 (1986)
[16] M. Kirkpatrick, B. Dodet, E. Odic, "Atmospheric pressure humid argon DBD plasma for the application of sterilization – Measurement and simulation of hydrogen, oxygen, and hydrogen peroxide formation", International Journal of Plasma Environment Science and Technology 1, 96-101 (2007)
[17] James R Hamilton, Jonathan Tennyson, Shuo Huang, Mark J. Kushner, "Calculated cross sections for electron collisions with NF3, NF2 and NF with applications to remote plasma sources", Plasma Sources Science and Technology 26, 065010 (2017)
[18] M. Hayashi, T. Nimura, "Calculation of electron swarm parameters in fluorine",
Journal of Applied Physics 54, 4879 (1983)
[19] Y. Itikawa, "Cross Sections for Electron Collisions with Nitrogen Molecules",
Journal of Physical and Chemical Reference Data 35, 31 (2006)
[20] L L Alves, "The IST-LISBON database on LXCat", IOP Publishing 565, 012007 (2014)
[21] L. Vriens, "Calculation of absolute ionization cross sections of He, He*, He+, Ne, Ne*, Ne+, Ar, Ar*, Hg and Hg*", Physics Letters 8, 260-261 (1964)
[22] A. C. H. Smith, E. Caplinger, R. H. Neynaber, Erhard W. Rothe, S. M. Trujillo, "Electron Impact Ionization of Atomic Nitrogen", Physical Review 127, 1647-1649 (1962)