簡易檢索 / 詳目顯示

研究生: 王霨寒
Wei-Han Wang
論文名稱: 以錯誤樣形為基礎的記憶體錯誤診斷之統計分析
Statistical Analysis for Failure-Pattern Based Memory Failure Diagnostics
指導教授: 吳誠文
Cheng-Wen Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 產業研發碩士積體電路設計專班
Industrial Technology R&D Master Program on IC Design
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 55
中文關鍵詞: 失效點矩陣印對圖錯誤分析錯誤診斷錯誤樣形
外文關鍵詞: Failure Bitmap, Failure Analysis, Failure Diagnostic, Failure Pattern
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於記憶體在系統單晶片中所佔的比例越來越大,根據ITRS的預測,在2010年之後記憶體在整個系統單晶片所佔的比例將達到90%以上,也就是說記憶體的良率將主宰整個晶片的良率;所以記憶體的失效分析和診斷在系統單晶片產品的生產與良率的提升中扮演了很關鍵的角色。
    然而傳統的失效分析像是記憶體的實體電路分析通常是耗費時間且價格昂貴的;相較之下,以錯誤樣形為基礎的失效分析是比較能接受且簡單的,為了在新的製程或是新產品中能達到理想的良率,有賴於有效的自動化記憶體診斷與失效分析方法,並搭配使用備用記憶體的修復技術。
    在我們的研究中,我們提出了一種以錯誤樣形為基礎的記憶體錯誤診斷之統計分析方法;為了能分析錯誤樣形,我們建立了一些工具—實體失效點陣印對圖轉換器與錯誤樣形擷取器,我們能用這些工具將由測試機台所得到的經壓縮的記憶體錯誤資料,搭配特定的規則將其轉換成失效點陣印對圖,而後從中擷取各種的錯誤樣形,在我們所建立的平台裡,在擷取錯誤樣形過程中,所有的錯誤樣形的參數可由使用者自行調整、定義,而且使用者也能自行定義特殊的錯誤樣形,以符合使用者的特殊需求,最後我們能得到所有的錯誤樣形的統計與錯誤樣形相關的資訊像是錯誤樣形在晶元上分佈的情況,或是錯誤樣形中錯誤的單元數目等等,最後我們也將我們的方法運用在業界的產品上,而結果是合理的。
    我們所提出的以錯誤樣形為基礎的記憶體錯誤診斷統計分析的方法能幫助我們建立出一個實際錯誤發生的環境,提供詳盡的錯誤樣形的統計與其他有關錯誤樣形的資訊,這些資訊可以幫助我們用在晶元層級的分析,且能有效的幫助備用記憶體分析和備用記憶體元件的建立。


    According to the recent ITRS report, memory cores will occupy more than 90% of the chip area
    in just a few years. The design of embedded memory test has became an essential part of SOC
    development infrastructure. Failure analysis (FA) and memory diagnostics play important roles in
    SOC product development and yield ramp up. Conventional FA, like physical analysis, is timeconsuming
    and expensive. Compared with physical analysis, the analysis based on failure pattern
    is more acceptable and simple. To improve yield in new process flow, we need an efficient and
    automatic methodology such as repair technique with redundant element or memory diagnostics.
    In this thesis, we propose a failure pattern oriented memory diagnostics methodology based on
    failure pattern statistics.
    In order to analyze the failure patterns, we developed some tools—physical bitmap convertor
    and failure pattern extractor (FPE)–help to convert bitmaps and extract failure patterns. We can
    verify the result with the failure pattern viewer that was developed by our laboratory previously,
    and we can identify the failure pattern which is special or appear frequently. The FPE provides the
    failure pattern statistics and sufficient failure information such as the faulty cell count of each bit
    line (BL) failure pattern, and the distribution of failure pattern after execution. This information
    is helpful for redundant element and repair circuit design. This complete, detailed information is
    also useful in the Redundancy Analysis (RA). In addition, we can use the failure pattern to narrow
    down the potential cause of failures and identify possible defects with the defect dictionary on
    wafer level. An experiment has been done on an industrial case, and the demonstrated results are
    reasonable.
    Our proposed approach provides another efficient way for memory diagnostics, and constructs
    a model of realistic failure distribution. This information of realistic failure distribution can help us
    to point out the key reason of the yield loss efficiently. The information of failure pattern generated
    can be used to diagnose memory on wafer level. This work has been very helpful in redundancy analysis and memory diagnostics during memory product and yield improvement.

    1 Introduction 1 1.1 Memory Testing and Diagnosis in SOC . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Background 7 2.1 FailureBitmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 MemoryFailureAnalysiswithFailurePatterns . . . . . . . . . . . . . . . . . . . 9 2.3 PreviousApproaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 StatisticalAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3 Failure Patterns Extraction 14 3.1 RawDataFormat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1.1 Run-lengthCompressionAlgorithm . . . . . . . . . . . . . . . . . . . . . 15 3.1.2 DataScrambling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1.3 RawDataParser andFaultBitmapViewer . . . . . . . . . . . . . . . . . . 21 3.2 Failure Patterns Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2.1 FailurePatternCharacteristic . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.2 FailurePattern Identification . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2.3 FailurePatternExtractor . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4 Experimental Result 38 4.1 Case Study: Failure Pattern Extraction on Chip Level . . . . . . . . . . . . . . . . 39 4.2 Case Study: Failure Pattern Distribution on Wafer Level . . . . . . . . . . . . . . 41 4.3 Case Study: BL Continues Bit and WL Continues Bit Analysis . . . . . . . . . . . 45 5 Conclusions and Future Work 50 5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

    [1] Y. Zorian, “Embedded infrastructure IP for SOC yield improvement”, in Proc. IEEE/ACM
    Design Automation Conf. (DAC), New Orleans, June 2002, pp. 709–712.
    [2] Dan K. Scovel, “Semiconductor industry outlook”, http://www.needhamco.com/, 2003.
    [3] Semiconductor Industry Association, “International technology roadmap for semiconductors
    (ITRS), 2001 edition”, Dec. 2001.
    [4] Abraham L. Landzberg and Van Nostrand Reinhold, Microelectronics Manufacturing Diagnostics
    Handbook, New York, 1992.
    [5] J.-P. de Gyvez and Dhiraj K. Pradhan, “Integrated circuit manufacturability”, 1988.
    [6] J. Vollrath, U. Lederer, and T. Hladschik, “Compressed bit fail maps for memory fail pattern
    classification”, in Proc. IEEE European Test Workship (ETW), 2000, pp. 125–130.
    [7] J. Segal, A. Jee, D. Lepejian, and B. Chu, “Using electrical bitmap results from embedded
    memory to enhance yield”, IEEE Design & Test of Computers, vol. 15, no. 3, pp. 28–39,
    May 2001.
    [8] I. Schanstra, D. Lukita, A. J. van de Goor, K. Veelenturf, and P. J. van Wijnen, “Semiconductor
    manufacturing process monitoring using built-in self-test for embedded memories”,
    in Proc. Int’l Test Conf. (ITC), Washington, DC, Oct. 1998, pp. 872–881.
    [9] J. T. Chen, J. Rajski, J. Khare, O. Kebichi, and W. Maly, “Enabling embedded memory
    diagnosis via test response compression”, in Proc. IEEE VLSI Test Symp. (VTS), Marina Del
    Rey, California, Apr. 2001, pp. 292–298.
    [10] M. A. Merino, S. Cruceta, A. Garcia, and M. Recio, “SmartBitTM: bitmap to defect correlation
    software for yield improvement”, in Advanced Semiconductor Manufacturing Conference
    and Workshop, IEEE/SEMI, Boston, Sept. 2000, pp. 194–198.
    [11] Y. E. Hong, L. S. Leong,W. Y. Choong, L. C. Hou, andM. Adnan, “An overview of advanced
    failure analysis techniques for Pentium and Pentium Pro microprocessors”, Intel Technology
    Jour., , no. 2, 1998.
    [12] M. A. Merino, “Achieving good correlation results between bitmap and tencor data”, in
    Advanced Semiconductor Manufacturing Conference and Workshop, IEEE/SEMI, 2001, pp.
    131–134.
    [13] C. Schuermyer, K. Cota, R. Madge, and B. Benware, “Identification of systematic yield limiters
    in complex ASICS through volume structural test fail data visualization and analysis”,
    in Proc. Int. Test Conf. (ITC), 2005.
    [14] J. T. Chen, J. Khare, K. Walker, S. Shaikh, J. Rajski, and W. Maly, “Test response compression
    and bitmap encoding for embedded memories in manufacturing process monitoring”, in
    Proc. Int’l Test Conf. (ITC), Baltmore, Oct. 2001, pp. 258–267.
    [15] R. Dekker, F. Beenker, and L. Thijssen, “Fault modeling and test algorithm development for
    static random access memories”, in Proc. Int’l Test Conf. (ITC), 1988, pp. 343–352.
    [16] D. Appelo, K. Giarda A. Fudoli, E. Gizdarski, B. Mathew, and V.Tancorre, “Yield analysis
    of logic circuits”, in Proc. IEEE VLSI Test Symp. (VTS), 2004.
    [17] A. J. van de Goor and J. E. Simonse, “Defining SRAM resistive defects and their simulation
    stimuli”, in Proc. Eighth IEEE Asian Test Symp. (ATS), Shanghai, Nov. 1999, pp. 33–40.
    [18] A. J. van de Goor and B. Smit, “Generating march tests automatically”, in Proc. Int’l Test
    Conf. (ITC), 1994, pp. 870–878.
    [19] S. Hamdioui and A. J. van de Goor, “An experimental analysis of spot defects in SRAMs:
    Realistic fault models and tests”, in Proc. Ninth IEEE Asian Test Symp. (ATS), Taipei, Dec.
    2000, pp. 131–138.
    [20] S. Hamdioui and A. J. van de Goor, “Efficient tests for realistic faults in dual-port SRAMs”,
    IEEE Trans. on Computers, vol. 51, no. 5, May 2002.
    [21] C.-F. Wu, C.-T. Huang, K.-L. Cheng, and C.-W. Wu, “Simulation-based test algorithm generation
    for random access memories”, in Proc. IEEE VLSI Test Symp. (VTS), Montreal, Apr.
    2000, pp. 291–296.
    [22] V. N. Yarmolik, Y. V. Klimets, A. J. van de Goor, and S. N. Demidenko, “RAM diagnostic
    tests”, in Proc. IEEE Int’l Workshop on Memory Technology, Design and Testing (MTDT),
    San Jose, 1996, pp. 100–102.
    [23] C.-F. Wu, C.-T. Huang, C.-W. Wang, K.-L. Cheng, and C.-W. Wu, “Error catch and analysis
    for semiconductor memories using March tests”, in Proc. IEEE/ACM Int’l Conf. on
    Computer-Aided Design (ICCAD), San Jose, Nov. 2000, pp. 468–471.
    [24] D. Niggemeyer and E. Rudnick, “Automatic generation of diagnostic March tests”, in Proc.
    IEEE VLSI Test Symp. (VTS), Marina Del Rey, California, Apr. 2001, pp. 299–304.
    [25] V. Vardanian and Y. Zorian, “A march-based fault location algorithm for static random access
    memories”, in Proc. IEEE Int’l Workshop on Memory Technology, Design and Testing
    (MTDT), France, July 2002, pp. 62–67.
    [26] K.-L. Cheng, C.-W. Wang, J.-N. Lee, Y.-F. Chou, C.-T. Huang, and C.-W. Wu, “FAME: a
    fault-pattern based memory failure analysis framework”, in Proc. IEEE/ACM Int’l Conf. on
    Computer-Aided Design (ICCAD), San Jose, Nov. 2003, pp. 595–598.
    [27] Jim Durham and Myriam Roussel, “A statistical method for correlating in-line defectivity to
    probe yield”, in Advanced SemiconductorManufacturing Conference, MotorolaMos6, 1997.
    [28] Iravani F., Habu M., and Khalily E., “Statistical modeling tools, methods and applications
    for interated circuit manufacturability”, in IC Microelectronic Test Structures, 1995, pp. 203–
    207.
    [29] M.-Y. Jaisinha and H. Potlapalli, “Data compression techniques for maps”, vol. 45, no. 1,
    pp. 878–883, 1989.
    [30] L.-T. Wang, C.-W. Wu, and X. Wen, Design for Testability: VLSI Test Principles and Architectures,
    Elsevier (Morgan Kaufmann), San Francisco, 2006.
    [31] C.-W. Wu, Slides of Course–VLSI Testing II, EE, NTHU, 2006.
    [32] C.-W. Wu, Slides of Course–Memory Testing, EE, NTHU, 2007.
    [33] M.-H. Hsu, Y.-T. Hsing, J.-C. Yeh, and C.-W. Wu, “Fault-pattern oriented defect diagnosis
    for flash memory”, in Proc. IEEE Int’l Workshop on Memory Technology, Design and Testing
    (MTDT), Taipei, Aug. 2006, pp. 3–8.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE