研究生: |
江宇倫 Chiang, Yu-Lun |
---|---|
論文名稱: |
液壓線性平台與液壓調節系統之建模與控制 Modeling and control of hydraulic linear platform and hydraulic adjustment system |
指導教授: |
杜佳穎
Tu, Jia-Ying |
口試委員: |
林士傑
Lin, Shih-Chieh 林錦德 Lin, Chih-Te |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 73 |
中文關鍵詞: | 比例閥 、節流器 、比例壓力閥 、比例溢流閥 、控制器 、系統識別 、液壓線性平台 、dSPACE控制器 |
外文關鍵詞: | Proportional valve, Restrictor, Proportional pressure valve, Proportional relief valve, Controller, System identification, Hydraulic linear platform, dSPACE controller |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
完整的線性平台系統包含線性滑軌與滑塊兩個元件,能夠承載裝置並做ㄧ
維平移,當滑塊與滑軌之間充滿高壓油成為非接觸式軸承,此完整系統可稱為
液壓線性平台,與傳統的接觸式線性平台相比,能夠提供延長壽命、低摩擦阻
力與高精度之優點。然而,液壓技術需考量較多參數,諸如流量、溫度、壓力
與黏滯性等,這些參數影響著液壓線性平台的效能與穩定性。
液壓平台系統油腔內節流器產生之壓力,決定軸承油壓之承載力與剛性,
進而決定線性平台之效能。油腔內壓力與節流器之長度、半徑、油膜厚度、油
的黏滯係數與供油壓力相關,此時進階控制器設計可應用液壓調控系統中,以
調節液壓線性平台之供油壓力,達到高精度與高穩定性之壓力表現;為此,比
例閥電控元件與感測器加裝於液壓調節系統,作為實時控制與監測之工具元
件。
本文討論液壓線性平台之性能補償,主要可分為三步驟:第一步為建立液
壓線性平台之靜態數學模型,第二步為比例閥應用在主動式液壓調控系統上做
參數識別,第三步為設計控制系統於液壓調控系統中,並模擬與實驗。基於主
動式液壓調控系統的壓力感測器與比例閥調控元件,第二步驟利用即時控制設
備dSPACE 與即時控制軟體ControlDesk 進行參數識別,建立液壓調控系統之多
輸入多輸出動態模型,並分析系統響應行為。於第三步驟中,動態模型與控制
系統以Matlab/Simulink 建模,比較未控制、前饋反饋控制、模型反矩陣控制、
與PID 控制情形下,比例閥與供油壓力之性能表現,以及模擬受承載力干擾下
的性能表現,最後討論模擬與實驗結果。
Linear platform of machine tool includes two major components, a slider and a
guideway. Within the linear platform system, when the gap between the slider and
guideway is filled with high-pressure hydraulic oil and becomes a contactless bearing,
this is called hydraulic bearing. Hydraulic bearing is able to provide higher precision,
longer cycle life, and lower friction than the traditional contact bearings; however, more
design parameters and control techniques related to temperature, flow, pressure, etc.,
affect the performance of hydraulic linear platform and need to be concerned with.
The loading capacity of hydraulic linear platform is determined by the design of
restrictors, oil film thickness, and supply pressure. While a hydraulic linear platform is
in operation and an external loading is applied, advanced control of hydraulic
adjustment system is required, in order to maintain a high-level stability and accuracy
of hydraulic pressure. To this end, a proportional valve installed in the hydraulic
adjustment system is considered in this work for real-time control and compensation.
In this work, the performance compensation of hydraulic linear platform is
introduced, which involves three steps of control development; the first step is to
establish the mathematical model of the hydraulic linear platform, the second is to
introduce proportional valve in hydraulic adjustment system and experiment on system
identification, and the third is to simulate the pressure response of hydraulic adjustment
system with controller design. In this work, real-time dSPACE control system is utilized
to implement identification work, for the purpose of establishing a multi-input/multioutput
dynamic model of the active hydraulic adjustment system. Then, based on the
dynamic model, the third step develops a feedforward-feedback and a PID controllers
for the active hydraulic adjustment system; the dynamic responses and control
performance are simulated for verification.
1. D.W. Parkins, Theoretical and experimental determination of the dynamic
characteristics of a hydrodynamic journal Bearing. ASME transcation, 1979. 101:
pp. 129-137.
2. L.S. Andres, Hydrodynamic fluid film bearings and their effect on the stability of
rotating Machinery. 2006, USA. pp. 13-20.
3. W.B. Rowe, Hydrostatic, aerostatic, and hybrid Bearing design. 2012, USA: Elsevier.
pp. 20-100.
4. V.S. Telingater, Hydraulic for Open Hydrostatic Slideways. Machine and Tooling,
1972. 43: pp. 15-20.
5. Fei Xue, et al., Research on Error Averaging effect of Hydrostatic guideways.
Precision Engineering, 2012. 36(1): pp. 84-90.
6. B.M. Stanley and M.L. Alfred, The Effect of the Method of Compensation on
Hydrostatic Bearing Stiffness. Journal of Basic Engineering, 1961: pp. 179-187.
7. T.S. Ling, On the optimization of the stiffness of externally pressurized bearings.
ASME, 1962. 84: pp. 119-122.
8. S.C. Sharma, et al., Performance of hydrostatic/hybrid journal bearings with
unconventional recess geometries. Tribology Transactions, 1998. 41: pp. 375-381.
9. Y. Kang, et al., Modified determination of fluid resistance for membrane-type
restrictors. Industrial Lubrication and Tribology, 2007: pp. 123-131.
10. N.D.Vaughan and J.B.Gamble, The Modeling and Simulation of a Proportional
Solenoid Valve. Transactions of the ASME. Journal of Dynamic Systems,
Measurement and Control, 1996. 118(1): pp. 5-120.
11. N.C. Cheung, K.W. Lim, and M.F. Rahman, Modeling a Linear and Limited Travel
Solenoid. IEEE, 1993.
12. 張冠坤、鐘洪, 液體靜壓動靜壓軸承設計使用手冊. 2007, 中國:電子工業出版社.
p.30.
13. Wei-Chih Lee, Characterization of the static and dynamic performance of a novel
pressure-sense-compensating hydrostatic bearing, in Power Mechanical Engineering.
2012, National Tsing Hua University. pp. 18-26.
14. R. Bassani and B. Piccigallo, Hydraulic Lubrication. 1992, Netherlands: Elsevier. pp.
73
149-167.
15. R. Maiti, R. Saha, and J. Watton, The static and dynamic characteristics of a pressure
relief valve with a proportional solenoid-controlled pilot stage. Proceedings of the
Institution of Mechanical Engineers, 2002. 216(I2): pp. 143-56.
16. Yu-Lun Chiang, Control simulation of hydraulic adhustment system. ASME
transcation, 2017, National Tsing Hua University.
17. Ting-Yu Chang, Analysis on Parameters and Design of Membrane-type Restrictors,
in Power Mechanical Engeering. 2015, National Tsing Hua University. p. 59.
18. C.T. Chen, Linear System Theory and Design. fourth edition ed. 2003, NY: Oxford
University Press. pp. 307-319.
19. J.G. Ziegler and N.B. Nichols, Optimum settings for automatic controllers. ASME
transcation, 1942. 64: pp. 759-768.
20. A.S. McCormack and K.R. Godfrey, Rule-Based Autotuning Based on Frequency
Domain Identification,. IEEE Transactions on Control Systems Technology, 1998. 6.