簡易檢索 / 詳目顯示

研究生: 林佳慧
Jia-Hui Lin
論文名稱: 鈣離子通道連續模型之數值研究
Numerical Study of Calcium Channel by a Continuum Model
指導教授: 劉晉良
Jinn-Liang Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 南大校區系所調整院務中心 - 應用數學系所
應用數學系所(English)
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 22
中文關鍵詞: 鈣離子通道泊松-費米方程
外文關鍵詞: Calcium Channel, Poisson-Fermi Equation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生物離子通道是一種多孔性的蛋白質。鈣離子通道則是透過控制鈣離子的濃度來取決於讓鈣離子或那裏子優先通過。而我用的模型,Poisson-Fermi Equation,是一個四階的非線性微分方程。而我們在解方程時在當中加入了空間位組(steric)和關聯效應。最後在透過中央有限差分法和牛頓法來解 Poisson-Fermi Equation。


    Biological Ion channel is a kind of porous protein on cell membrane. Calcium channels preferentially conduct calcium ions. The Poisson-Fermi equation is a fourth-order nonlinear PDE that deals with both steric and correlation effects of all ions and solvent molecules involved in a model system. This equation is approximated by using the central finite difference method in three dimensions. A simplified matched interface and boundary method is used to treat jump conditions between solvent and molecular domains. Some numerical results of ionic concentration profiles are presented in this thesis.

    1 Introduction .............................................3 2 The Poisson-Fermi Equation ...............................3 3 Numerical Methods and Results ............................8 3.1 The central …nite di¤erence .............................8 3.2 Matched interface and boundary method (MIB) .......... 11 3.3 Newton’s method ....................................... 15 3.4 Algorithm .............................................16 4 Unit Conversion and Physical Constants ..................18 5 Conclusions .............................................19

    [1] R. E. Bank, D. J. Rose, Some error estimates for the box method, SIAM J. Numer. Anal. 24 (1987) 777-787.
    [2] M. Z. Bazant, M. S. Kilic, B. D. Storey, A. Ajdari, Towards an under-standing of induced-charge electrokinetics at large applied voltages in concentrated solutions, Adv. Coll. Interf. Sci. 152 (2009) 48-88.
    [3] M. Z. Bazant, B. D. Storey, A. A. Kornyshev, Double layer in ionic liquids: Overscreening versus crowding, Phys. Rev. Lett. 106 (2011)046102.
    [4] N. Bjerrum, Die Dissoziation der starken Elektrolyte, Zeitschr. f. Elek-trochemie 24 (1918) 321-328.
    [5] I. Borukhov, D. Andelman, H. Orland, Steric e叉cts in electrolytes: A modified Poisson-Boltzmann equation, Phys. Rev. Lett. 79 (1997) 435-438.
    [6] A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math.Comp. 31 (1977) 333-390.
    [7] R.-C. Chen, J.-L. Liu, An accelerated monotone iterative method for the
    quantum-corrected energy transport model, J. Comp. Phys. 227 (2008)6266-6240.
    [8] I-L. Chern, J.-G. Liu, W.-C.Wang, Accurate evaluation of electrostatics for macromolecules in solution, Meth. Appl. Anal. 10 (2003) 309-328.
    [9] R. S. Dembo, S. C. Eisenstat, T. Steihaug, Inexact Newton methods, SIAM J. Numer. Anal. 19 (1982) 400-408.
    [10] D. A. Doyle, J.M. Cabral, R. A. Pfuetzner, A. L. Kuo, J.M. Gulbis, S. L. Cohen, B. T. Chait, R.MacKinnon, The structure of the potassium channel: molecular basis of K+ conduction and selectivity, Science 280(1998) 69.77.
    [11] P. T. Ellinor, J. Yang, W.A. Sather, J. F. Zhang, R. W. Tsien, Ca2+ interactions, Neuron 15 (1995) 1121.1132.
    [12] W. Geng, S. Yu, G. Wei, Treatment of charge singularities in implicit solvent models, J. Chem. Phys. 127 (2007) 114106.
    [13] M. Holst, F. Saied, Numerical solution of the nonlinear Poisson-Boltzmann equation: Developing more robust and efficient methods, J. Comput. Chem. 16 (1995) 337-364.
    [14] S.M. Hou, X.-D. Liu, A numerical method for solving variable coefficient elliptic equation with interfaces, J. Comput. Phys. 202 (2005) 411-445.
    [15] W. Humphrey, A. Dalke, K. Schulten, VMD - Visual Molecular Dynam-ics, J. Molec. Graph. 14 (1996) 33-38.
    [16] J. W. Jerome, Consistency of semiconductor modeling: An exis-tence/stability analysis for the stationary van roosbroeck system, SIAM J. Appl. Math. 45 (1985) 565-590.
    [17] J.-L. Liu, Lecture Notes on Poisson-Nernst-Planck Modeling and Simu-lation of Bio-logical Ion Channels, 2012.
    [18] J.-L. Liu, Numerical methods for the Poisson.Fermi equation in elec-trolytes, Journal of Computational Physics 247(2013) 88-89.
    [19] J.-L. Liu, On weak residual error estimation, SIAM J. Sci. Comput. (1996) 1249-1268.
    [20] J.-L. Liu, W. C. Rheinboldt, A posteriori .nite element error estimators for parametrized nonlinear boundary value problems, Numer. Funct. Anal. and Optimiz., 17 (1996), 605-637.
    [21] B. Lu, J. A. McCammon, Molecular surface-free continuum model for electrodiffiusion processes, Chem. Phys. Lett. 451 (2008) 282. 286.
    [22] B. Z. Lu, Y. C. Zhou, M. J. Holst, J. A. McCammon, Recent progress in numerical methods for the Poisson-Boltzmann equation in biophysical applications, Commun. Comput. Phys. 3 (2008) 973-1009.
    [23] A. Malasics , D. Gillespie , W. Nonner , D. Henderson , B. Eisenberg ,D. Boda Biochimica et Biophysica Acta 1788 (2009) 2471.2480.
    [24] J. Ortega, W. C. Rheinboldt, Iterative Solutions of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.
    [25] M. F. Sanner, A. J. Olson, J. C. Spehner, Reduced surface: An efficient way to compute molecular surfaces, Biopolymers 38 (1996) 305-320.
    [26] C. Tanford, Physical Chemistry of Macromolecules, John Wiley & Sons, New York, 1961.
    [27] F.J. Sigworth, Covariance of nonstationary sodium current .uctuations at the node of Ranvier, Biophys. J. 34 (1981) 111.133.
    [28] F.J. Sigworth, Voltage gating of ion channels, Q. Rev. Biophys. 27 (1994)1.40.
    [29] R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs,NJ, 1962.
    [30] J. Yang, P. T. Ellinor,W.A. Sather, J. F. Zhang, R. W. Tsien,Molecular determinants of Ca2+selectivity and ion permeation in L-type Ca2+ channels, Nature 366 (1993) 158.161.
    [31] Q. Zang, D. Chen, and G.-W. Wei, Second-order Poisson Nernst-Planck
    solver for ion channel transport, J.Comp. Phys. 230 (2011) 5239-5262.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE