簡易檢索 / 詳目顯示

研究生: 王明璁
Ming-Tsong Wang
論文名稱: 應用於金氧半電晶體閘極氧化層的氧化鋯薄膜電性之研究
The Electrical Properties of Zirconium Oxide Thin Films for Metal-Oxide-Semiconductor Field Effect Transistor Gate Dielectric Applications
指導教授: 李雅明
Joseph Ya-min Lee
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 112
中文關鍵詞: 高介電常數氧化鋯介電層傳導機制歐姆傳導修正型Schottky發射修正型Poole-Frenkel發射Fowler-Nordheim穿透缺陷所造成穿透發射載子移動率退化庫侖散射表面平坦度散射聲子散射
外文關鍵詞: High k, ZrO2 gate dielectric, Conduction mechanism, ohmic conduction, modified Schottky emission, modified Poole-Frenkel emission, Fowler-Nordheim tunneling, tunnel emission of trapped electrons, mobility degradation, Coulomb scattering, surface roughness scattering, phonon scattering
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當金氧半電晶體,通道長度小於0.1 um,閘極氧化層厚度小於1.5nm時,直接穿隧電流將過大而使得晶片的功率消耗太大而無法使用。高介電常數薄膜因為可以用來取代二氧化矽作為金氧半電晶體的閘氧化層並壓抑直接穿隧電流而受到注目。其中,高介電常數薄膜氧化鋯(ZrO2)由於具有高介電常數(20~25),高崩潰電場(7-15 MV/cm),低漏電電流,因而更加有可能可以取代二氧化矽。在本論文中,我們製作出金屬鋁/氧化鋯/p型矽的電容及金氧半電晶體並研究其相關特性。
    為了研究及區分氧化鋯薄膜的在不同溫度及外加偏壓下的傳導機制,我們使用變溫來量測金屬鋁/氧化鋯/p型矽的電容。在金屬鋁電極為負偏壓時 我們發現在不同溫度及外加偏壓區間的傳導機制分別為(1)修正型Schottky發射;(2)修正型Poole-Frenkel發射;(3) Fowler-Nordheim穿透;(4)及缺陷所造成穿透發射。藉由不同傳導機制的方程式,我們萃取出相關電性參數。並建構出能帶圖。
    接著,我們探討以氧化鋯作為閘氧化層金氧半電晶體特性,並量測IDS-VDS 及 IDS-VGS 。同時,我們研究有效載子移動率 (effective mobility)退化。有效垂直電場(effective vertical field)隨溫度改變的情況,經過系統化的分析,發現氧化鋯N通道場效電晶體在庫侖散射(Coulomb scattering)、表面平坦度散射(surface roughness scattering)與聲子散射(phonon scattering)的情況均較二氧化矽電晶體嚴重許多。這種情況可用soft optical phonon散射來加以解釋。最後,經由電導法(conductance method),以氧化鋯作為閘氧化層的二極體(gated diode)之量測,得到氧化鋯與矽介面的場空乏區介面缺陷電荷密度Dit (interface trapped charge densities)約為5.79×10^12 cm^-2-eV^-1,表面結合速度為941 cm/s,及少數載子活期為1.32×10-6 sec。並且與二氧化矽和氧化鉭做比較。
    總結,首先我們分析氧化鋯薄膜的在不同溫度及外加偏壓下的傳導機制。其次,我們研究有效載子移動率 (effective mobility)退化。最後,我們量測並獲得氧化鋯與矽介面的場空乏區的相關電性參數。


    When the channel length of the MOSFET is scaled below 0.1 μm and SiO2 gate oxide thickness below 1.5 nm, tunneling current will increase significantly. Zirconium oxide (ZrO2) is considered as a potential replacement of SiO2. In this thesis, metal-insulator-semiconductor (MIS) capacitors, and MOSFETs with ZrO2 gate dielectrics were fabricated. The temperature dependence of the conduction current for Al/ZrO2/p-Si MIS capacitors was studied. With the Al electrode biased negative, the conduction mechanisms are found to be: (1) modified Schottky emission; (2) modified Poole-Frenkel emission; (3) Fowler-Nordheim tunneling; and (4) tunnel emission of trapped electrons under different temperature and electric field regions. The related electrical parameters are extracted from the I-V characteristics.
    The transistor properties were characterized. The IDS-VDS and IDS-VGS characteristics were measured. The degradation of electron mobility was studied. The temperature dependence of the electron mobility on vertical field reveals that Coulomb scattering, surface roughness scattering and phonon scattering of ZrO2-gated n-MOSFETs are more severe than that of SiO2-gated n-MOSFETs in the temperature range from 300 K to 420 K. Transverse soft optical phonons was used to explain the extra source of phonon scattering in ZrO2-gated n-MOSFETs.
    The interface trapped charge density, the surface recombination velocity, and the minority carrier lifetime in the field-induced depletion region measured from gated diodes were 5.79×1012 cm-2-eV-1, 941 cm/s, and 1.32×10-6 sec, respectively. A comparison with MOSFETs using SiO2 and Ta2O5 gate oxides was made.
    In summary, the conduction mechanisms in ZrO2 thin films were analyzed. The degradation of electron mobility was studied. The parameters in the field-induced depletion region of the ZrO2 gated diodes were obtained.

    Contents Pages Chapter 1 Introduction 1.1 Overview 1 1.2 The application of zirconium oxide (ZrO2) 2 1.2.1 MOSFET gate dielectric applications 2 1.2.2 DRAM applications 3 1.2.3 Ferroelectric RAM (FeRAM) applications 4 1.3 Outline of the thesis 4 Chapter 2 Physical properties of ZrO2 thin films 2.1 Thermodynamic Stability 6 2.2 Energy band gap 7 2.2 Metal/insulator barrier height 7 Chapter 3 Fabrication processes, material properties, and capacitance-voltage characteristics 3.1 Fabrication processes 9 3.1.1 Deposition methods of ZrO2 films 9 3.1.2 Al/ZrO2/p-Si metal-insulator-semiconductor (MIS) capacitors 9 3.1.3 MOSFETs with ZrO2 gate dielectrics 10 3.2 Material properties 11 3.2.1 X-ray diffraction (XRD) analysis 11 3.2.2 Transmission electron microscopy (TEM) measurement 11 3.2.3 Secondary ion mass spectroscopy (SIMS) analysis 12 3.2.4 X-ray photoelectron spectroscopy (XPS) analysis 12 3.3 Capacitance-voltage (C-V) characteristics 13 Chapter 4 Conduction current mechanisms in ZrO2 thin films 4.1 Electrode limited current mechanisms 16 4.1.1 Schottky emission 16 4.1.2 Fowler-Nordheim tunneling 19 4.2 Bulk-limited current mechanisms 20 4.2.1 Ohmic conduction 20 4.2.2 Poole-Frenkel emission 23 4.2.3 Tunnel emission of trapped electrons 24 Chapter 5 Electrical properties of MOSFET with ZrO2 gate dielectric 5.1 Drain current 30 5.2 Temperature dependence of threshold voltage 31 5.3 Mobility degradation mechanism of ZrO2-gated MOSFETs 32 5.3.1 Coulomb scattering 34 5.3.2 Surface roughness scattering 34 5.3.3 Phonon scattering 35 Chapter 6 Gated diode 6.1 MOS gated diode characterization 36 Chapter 7 Conclusions and Future Studies References 43 Tables and Figures 54 Vita 108 Publication List 109

    References
    1. International Technology Roadmap for Semiconductors, 2005 Edition, p. 15.
    2. H. S. Momose, M. Ono, T. Yoshitomi, T. Ohguro, S. Makamura, M. Saito, and H. Iwai, “1.5 nm Direct-tunneling Gate Oxide Si MOSFET’s,” IEEE Trans. Electron Devices, vol. 43, p. 1233, August 1996.
    3. J. L. Autran, R. Devine, C. Chaneliere, and B. Balland, “Fabrication and characterization of Si-MOSFET’s with PECVD amorphous Ta2O5 gate insulator,” IEEE Electron Device Lett., vol. 18, p. 447, 1997.
    4. Q. Lu, D. Park, A. Kalnitsky, C. Chang, C. C. Cheng, S. P. Tay, T. J. King, and C. Hu, “Leakage Current Comparison Between Ultra-Thin Ta2O5 Films and Conventional Gate Dielectrics,” IEEE Electron Device Lett., vol. 19, p. 341, 1998.
    5. D. Park, Y. King, Q. Lu, T. J. King, C. Hu, A. Kalnitsky, S. P. Tay, and C. C. Cheng, “Transistor Characterization with Ta2O5 Gate Dielectric,” IEEE Electron Device Lett., vol. 19, no. 11, p. 441, 1998.
    6. J. C. Yu, B. C. Lai, and J. Y. Lee, “Fabrication and Characterization of Metal-Oxide-Semiconductor Field-Effect Transistors and Gated Diodes Using Ta2O5 Gate Oxide,” IEEE Electron Device Lett., vol. 21, no. 11, p. 537, 2000.
    7. B. C. Lai, N. Kung, and J. Y. Lee, “A Study on the Capacitance -voltage Characteristics of Metal-Ta2O5-silicon Capacitors for Very Large Scale Integration Metal-Oxide-Semiconductor Gate Oxide Applications,” J. Appl. Phys., 85, p. 4087, 1999.
    8. B. C. Lai, J. C. Yu, and J. Y. Lee, “Ta2O5/Silicon Barrier Height Measured from MOSFETs Fabrication with Ta2O5 Gated Dielectric,” IEEE Electron Device Lett., vol. 22, p. 221, 2001.
    9. C. Chaneliere, S. Four, J. L. Autran, R. A. B. Devine, and N. P. Sandler, “Properties of Amorphous and Crystalline Ta2O5 Thin Films Deposited on Si from Ta(OC2H5)5 precursor,” J. Appl. Phys., 83, p. 4823, 1998.
    10. S. A. Campbell, D. C. Gilmer, X. C. Wang, M. T. Hsieh, H. S. Kim, W. L. Gladfelter and J. Yan, “MOSFET Transistor Fabricated with High Permitivity TiO2 Dielectric,” IEEE Trans. Electron Devices, vol. 44, no. 1, p. 104 , 1997.
    11. B. He, T. Maz, S. A. Campbell and W. L. Gladfchcrz, “A 1.1nm Oxide Equivalent Gate Insulator Formed Using TiO2 on Nitrided Silicon,” IEDM tech. Dig., 1998, p. 1038.
    12. L. Manchanda, W. H. Lee, J. E. Bower, F. H. Baumann, W. L. Brown, C. J. Case, R. C. Keller, Y. O. Kim, E. J. Laskowski, M. D. Morris, R. L. Opila, P. J. Silverman, T. W. Sorsch, and G. R. Webber, “Gate Quality Doped High K Film for CMOS Beyond 100nm: 3-10nm Al2O3 with Low Leakage and Low Interface States,” IEDM Tech. Dig., 1998, p. 605.
    13. L. Kang, Y. Jeon, K. Onishi, B. H. Lee, W. J. Qi, R. Nieh, S. Gopalan, and J. C. Lee, “Single-layer Thin HfO2 Gate Dielectric with n+-Polysilicon Gate,” IEEE Symp. VLSI Tech. Dig., 2000, p. 44.
    14. S. J. Lee, H. F. Luan, C. H. Lee, T. S. Jeon, W. P. Bai, Y. Senzaki, D. Roberts, and D. L. Kwong, “Performance and Reliability of Ultra Thin CVD HfO2 Gate Dielectrics with Dual Poly-Si Gate Electrodes,” IEEE Symp. VLSI Tech. Dig., 2001, p. 133.
    15. L. Kang, B. H. Lee, W. J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi, and J. C. Lee, “Electrical Characteristics of Highly reliable Ultrathin Hafnium Oxide Gate Dielectric,” IEEE Electron Device Lett., vol. 21, no. 4, p. 181, 2000.
    16. B. H. Lee, L. Kang, W. J. Qi, R. Nieh, Y. Jeon, K. Onishi and J. C. Lee, “Ultrathin Hafnium Oxide with Low Leakage and Excellent Reliability for Alternative Gated Dielectric Application,” IEDM Tech. Dig., 1999, p. 133.
    17. J. McPherson, J. Kim, A. Shanware, H. Mogul, and J. Rodriguez, “Proposed universal relationship between dielectric breakdown and dielectric constant,” IEDM Tech. Dig., 2002, p. 633.
    18. A. Chin, Y. H. Wu, S. B. Chen, C. C. Liao, and W. J. Chen, “High quality La2O3 and Al2O3 gate dielectrics with equivalent oxide thickness 5-10 Å,” Symp. VLSI Tech., 2000, p16.
    19. H. Iwai, S. Ohmi, S. Akama, A. Kikuchi, I. Kashiwagi, J. Jaguchi, H. Yamamoto, J. Tonotani, Y. Kim, I. Ueda, A. Kuriyama, and Y. Yoshihara, “Advanced gate dielectric materials for sub-100 nm CMOS,” in IEDM Tech. Dig. , 2002, p. 625.
    20. S. W. Kang and S. W. Rhee, “Deposition of La2O3 Films by Direct Liquid Injection Metallorganic Chemical Vapor Deposition“, J. Electrochem. Soc., vol. 149, issue 6, p. 345, 2002.
    21. J. Y. M. Lee and B. C. Lai, “The electrical properties of high-dielectric-constant and ferroelectric thin films for very large scale integration circuits” pp.1-98, in Ferroelectric and Dielectric Thin Films, ed. By H. S. Nalwa, Academic Press, 2002.
    22. S. Y. Lee, H. Kim, P. C. Mclntyre, K.C. Saraswat, and J. S. Byun, “Atomic layer deposition of ZrO2 on W for metal-insulator-metal capacitor application”, Appl. Phys. Lett. 82, p. 2874, 2003.
    23. R. Mahapatra, J. H. Lee, S. Maikap, G. S. Kar, A. Dhar, N.M. Hwang, D. Y. Kim, B. K. Mathur and S.K. Ray, “Electrical and interfacial characteristics of ultrathin ZrO2 gate dielectrics on strain compensated SiGeC/Si heterostructure”, Appl. Phys. Lett. 82, p. 2320, 2003.
    24. J. P. Chang and Y. S. Lin, “Dielectric Property and conduction mechanism of ultrathin zirconium oxide films”, Appl. Phys. Lett. 79, p. 3666, 2001.
    25. T. Yamaguchi, H. Satake, N. Fukushima and A. Toriumi, “Band Diagram Carrier Conduction Mechanism in ZrO2/Zr-silicate/Si MIS Structure Fabricated by Pulsed-laser-ablation Deposition”, IEEE IEDM Tech. Dig. , 2000, p. 19.
    26. W. J. Qi, R. Nieh. B. H. Lee, L. Kang, Y. Jeon, K. Onishi, T. Ngai, S. Banerjee, and J. C. Lee, “MOSCAP and MOSFET Characteristics using ZrO2 gate dielectric deposited on Si,” IEEE IEDM Tech. Dig., 1999, p. 145.
    27. Y. Ma., Y. Ono, L. Stecker, D. Evans, and S.T. Hsu, ”Zirconium Oxide Based Gate Dielectrics with Equivalent Oxide Thickness of Less Than 1.0nm and Performance of Submicron MOSFET using a Nitride Gate Replacement Process,” IEEE IEDM Tech. Dig., 1999, p. 149.
    28. C. H. Lee, H. F. Luan, W. P. Bai, S. J. Lee, T. S. Jeon, Y. Senzaki, D. Roberts, and D. L. Kwong, “MOS Characteristics of Ultra Thin Rapid Thermal CVD ZrO2 and Zr Silicate Gate Dielectrics,” IEEE IEDM Tech. Dig., 2000, p. 27.
    29. Z. J. Luo, T. P. Ma, E. Cartier, M. Copel, T. Tamagawa, B. Halpern, “Ultra-thin ZrO2 (or silicate) with high thermal stability for CMOS gate application,” IEEE Symp. VLSI Tech. Dig, 2001, p. 135.
    30. C. H. Lee, Y. H. Kim, H. F. Luan, S. J. Lee, T. S. Jeon, W. P. Bai, and D. L. Kwong, “Ultra-thin ZrO2 (or silicate) with High Thermal Stability For CMOS Gate Application,” IEEE Symp. VLSI Tech. Dig., 2001, p. 137.
    31. T. Ngai, W. J. Qi, X. Chen, R. Sharma, J. L. Fretwell, J. C. Lee, and S. K. Banerjee, “SiGe and Si PMOSFET's characteristics with ZrO2 gate dielectric,” IEEE Device Research Conference, 58th DRC, 19-21 June 2000, Conference Dig., 2000, p. 21.
    32. N. N. Greenwood and A. Earnshaw, Chemistry of the elements, Pergamon Press Ltd, 1984.
    33. T. Hori, Gate Dielectrics and MOS ULSIs: Principles, Technologies, and Applications, Springer-Verlag, Berlin, Germany, 1997.
    34. J. Shappir, A. Anis, and I. Pinsky, “Investigation of MOS capacitors with thin ZrO2 layers and various gate materials for advanced DRAM applications,” IEEE Trans. Electron Devices, vol. 33, no. 4, p. 442 , 1986.
    35. J. F. Scott, Feroelectric Memories, Springer-Verlag, Berlin, 2000.
    36. J. D. Park, J. W. Kim, and T. S. Oh, “Characteristics of the MFIS-FET structures processed using SBT ferroelectric thin films.” Proceedings of the 2000 12th IEEE International Symposium on Applications of Ferroelectrics, vol 2. p. 637, 2000..
    37. J. P. Chang and Y. -S. Lin, “Thermal stability of stacked high-k dielectrics on silicon”, Appl. Phys. Lett., 79, p. 3824, 2001.
    38. M. Gutowski, J. E. Jaffe, C. L. Liu, M. Stoker, R. I. Hegde, R. S. Rai, and P. J. Tobin, “Thermodynamic stability of High-K Dielectric metal oxide ZrO2 and HfO2 in Contact with Si and SiO2,” Appl. Phys. Lett., 80, p. 1897, 2002.
    39. K. J. Hubbard and D. G. Schlom, “Thermodynamic Stability of Binary Oxides in Contact with Silicon,” J. Mater. Res., 11, p. 2757, 1996.
    40. T. S. Jeon, J. M. White, and D. L. Kwong, “Thermal Stability of Ultrathin ZrO2 Films Prepared by Chemical Vapor Depositor on Si(100)”, Appl. Phys. Lett., 78, p. 368, 2001.
    41. M. Houssa, M. Tuominen, M. Naili, V. Afanas’ev, A. Stesmans, S. Haukka, M. Heyns, “Trap-assisted tunneling in high permittivity gate dielectric stacks” J. Appl. Phys. 87, p. 8615, 2000.
    42. M. T. Wang, T. H. Wang, and J. Y. M. Lee, “The electrical conduction mechanism in high-dielectric-constant ZrO2 thin films”, J. Electrochem.Soc., 152, p. 182, 2005.
    43. V. V. Afanas’ev, M. Houssa, and A. Stesmans, “Electron energy barrier between (100) Si and ultrathin stacks of SiO2, Al2O3, and ZrO2 insulators”, Appl. Phys. Lett. 78, p. 3073, 2001.
    44. W. K. Chim, T. H. Ng, B. H. Koh, W. K. Choi, J. X. Zheng, C. H. Tung, and A.Y. Du, “ Interfacial and bulk properties of zirconium dioxide as a gate dielectric in metal-insulator-semiconductor structures and current transport mechanism”, J. Appl. Phys. 93, p. 4788, 2003.
    45. H. Ishii, A. Nakajima, and S. Yokayama, “Growth and Electrical Properties of Atomic-layer Deposited ZrO2/Si-nitride stack gate dielectrics,” J. Appl. Phys., 95, p. 536, 2004.
    46. M. T. Wang, T. H. Wang, Bonds Yi-Yi Cheng, and J. Y. M. Lee, “Temperature-dependence of the tunnel-emission conduction current in metal-ZrO2-silicon capacitor structures”, J. Electrochem. Soc., 153, p. 8, 2006.
    47. M. Houssa, V. V. Afanas'ev, and A. Stesmans, and M. M. Heyns, “Variation in the fixed charge density of SiOx/ZrO2 gate dielectric stacks during postdeposition oxidation”, Appl. Phys. Lett., 77, p. 1885, 2000.
    48. W. J. Qi, R. Nieh, B. H. Lee, L. Kang, Y. Jeon, and J. C. Lee, ”Electrical and Reliability Characteristics of ZrO2 Deposited Directly on Si for Gate Dielectric Application,” Appl. Phys. Lett., 77, p. 3269, 2000.
    49. V. Misra, G. P. Heuss, and H. Zhong, ” Use of metal–oxide–semiconductor capacitors to detect interactions of Hf and Zr gate electrodes with SiO2 and ZrO2,” Appl. Phys. Lett., 78, p. 4166, 2001.
    50. R. Mahapatra, S. Maikap, Je-Hun Lee, G. S. Kar, A. Dhar, Nong-M. Hwang, Doh-Y. Kim, B. K. Mathur, and S. K. Ray, ” Effects of interfacial nitrogen on the structural and electrical properties of ultrathin ZrO2 gate dielectrics on partially strain-compensated SiGeC/Si heterolayers,” Appl. Phys. Lett., 82, p. 4331, 2003.
    51. T. H. Ng, B. H. Koh, W. K. Chim, W. K. Choi, J. X. Zheng, C. H. Tung, and A. Y. Du, “Zirconium dioxide as a gate dielectric in metal-insulator-silicon structures and current transport mechanisms”, IEEE international conference on semiconductor electronics (ICSE) proceedings, 2002, p. 130.
    52. D. W. Kim, Prins, F.E.; Taehoon Kim; Sungbo Hwang; Lee, C.H.; Dim-Lee Kwong; and S. K. Banerjee, “Reduction of charge-transport characteristics of SiGe dot floating gate memory device with ZrO2 tunneling oxide”, IEEE Trans. Electron Devices, vol. 50, no. 2, p. 510, 2003.
    53. B. O. Cho, J. P. Chang, J. H. Min, S. H. Moon, Y. W. Kim and I. Levin, “Material characteristics of electrically tunable zirconium oxide thin films”, J. Appl. Phys. 93, p. 745, 2003.
    54. S. K. Dey, C.-G. Wang, D. Tang, M. J. Kim, R. W. Carpenter, C. Werkhoven, and E. Shero, “Atomic layer chemical vapor deposition of ZrO2-based dielectric films: Nanostructure and nanochemistry”, J. Appl. Phys. 93, p. 4144, 2003.
    55. Y.-S. Lin, R. Puthenkovilakam, J. P. Chang, C. Bouldin, I. Levin, N. V. Nguyen, J. Ehrstein, Y. Sun, P. Pianetta, T. Conard, W. Vandervorst, V. Venturo and S. Selbrede, “Interfacial properties of ZrO2 on silicon”, J. Appl. Phys. 93, p. 5945, 2003.
    56. J. Niinistö, M. Putkonen, L. Niinistö, K. Kukli, M. Ritala, and M. Leskelä, “Structural and dielectric properties of thin ZrO2 films on silicon grown by atomic layer deposition from cyclopentadienyl precursor”, J. Appl. Phys. 95, p. 84, 2004.
    57. H. Watanable, ”Interface Engineering of a ZrO2/SiO2/Si Layered Structure by in Situ Reoxidation and its Oxygen-pressure-dependent Thermal Stability,” Appl. Phys. Lett., 78, p. 3803, 2001.
    58. S. Stemmer, Z. Chen, R. Keding, J. P. Maria, D. Wicaksana, and A. I. Kingon, “Stability of ZrO2 layers on Si (001) during high-temperature anneals under reduced oxygen partial pressures”, J. Appl. Phys. 92, p. 82, 2002.
    59. V. V. Afanas’ev, and A. Stesmans, “Hydrogen-Induced Valence Alternation State at SiO2 Interfaces”, Phys. Rev. Lett. 80, p. 5176, 1998.
    60. S. M. Sze, Physics of Semiconductor Device, 2nd ed., Wiley, New York, 1981.
    61. K. Y. Lim, D. G. Park, H. J. Cho, J. J. Kim, J. M. Yang, I. S. Choi, I. S. Yeo, and J. W. Park, “Electrical characteristics and thermal stability of n+ polycrystalline- Si/ZrO2/SiO2/Si metal–oxide–semiconductor capacitors” J. Appl. Phys. 91, p. 414, 2002.
    62. C. R. Crowell and S. M. Sze, “Current Transport in Metal -Semiconductor Barriers,” Solid State Electron., vol 9, p. 1035, 1966.
    63. M. Lenzlinger and E. H. Snow, “Fowler-Nordheim Tunneling into Thermally Grown SiO2”, J. Appl. Phys. 40, p. 278, 1969.
    64. M. T. Wang, S. Y. Deng, T. H. Wang, B. Y. Y. Cheng and J. Y. M. Lee, “The Ohmic Conduction Mechanism in High-Dielectric-Constant ZrO2 Thin Films”, J. Electrochem. .Soc., 152, p. 542, 2005.
    65. A. Rose, “Space-Charge-Limited Currents in Solids”, Phys. Rev. 97, p. 1538, 1955.
    66. M. A. Lampert, “Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps”, Phys. Rev. 103, p. 1648, 1956.
    67. S. Ezhilvalavan and T. Y. Tseng, “Conduction mechanisms in amorphous and crystalline Ta2O5 thin films” J. Appl. Phys. 83, p. 4797, 1998.
    68. J. G. Simmons, “Poole-Frenkel Effect and Schottky Effect in Metal-Insulator-Metal Systems”, Phys. Rev. 155, p. 657, 1967.
    69. J. R. Yeargan, H. L. Taylor, “The Poole-Frenkel Effect with Compensation Present,” J. Appl. Phys., 39, p. 5600, 1968.
    70. X. R. Cheng, Y. C. Cheng, and B. Y. Liu, “Nitridation-enhanced conductivity behavior and current transport mechanism in thin thermally nitrided SiO2” J. Appl. Phys. 63, p. 797, 1988.
    71. S. Fleischer, P. T. Lai and Y. C. Cheng, “Simplified closed-form trap-assisted tunneling model applied to nitrided oxide dielectric capacitors” J. Appl. Phys. 72, p. 5711, 1992.
    72. S. M. Sze, “Current Transport and Maximum Dielectric Strength of Silicon Nitride Films” J. Appl. Phys. 38, p. 2951, 1967.
    73. A. G. Chymoweth, Progress in Semiconductors. (John Wiley & Sons, Inc., New York, 1960), Vol. 4, p. 95.
    74. M. Kimura and T. Ohmi, “Conduction mechanism and origin of stress-induced leakage current in thin silicon dioxide films” J. Appl. Phys. 80, p. 6360, 1996.
    75. S. Elrharbi, M. Jourdain, and A. Meinertzhagen, “Effect of tunneling electrons in Fowler–Nordheim regime on the current-voltage characteristics and model of degradation of metal-oxide-semiconductor capacitors” J. Appl. Phys. 76, p. 1013, 1994.
    76. G. Pananakakis, G. Ghibaudo, R. Kies, and C. Papadas, “Temperature dependence of the Fowler–Nordheim current in metal-oxide-degenerate semiconductor structures”, J. Appl. Phys. 78, p. 2635, 1995.
    77. A. Hadjadj, O. Simonetti, T. Maurel, G. Salace, and C. Petit, “Si–SiO2 barrier height and its temperature dependence in metal-oxide-semiconductor structures with ultrathin gate oxide”, Appl. Phys. Lett. 80, p. 3334, 2002.
    78. A. Hadjadj, G. Salace, and C. Petit, “Fowler–Nordheim conduction in polysilicon (n+)-oxide–silicon (p) structures: Limit of the classical treatment in the barrier height determination”, J. Appl. Phys. 89, p. 7994, 2001.
    79. G. Salace, A. Hadjadj, C. Petit, and M. Jourdain, “Temperature dependence of the electron affinity difference between Si and SiO2 in polysilicon (n+)–oxide–silicon (p) structures: Effect of the oxide thickness”, J. Appl. Phys. 85, p. 7768, 1999.
    80. R. E. Nieh, S. K. Chang, H. Cho, K. Onishi, R. Choi, S. Krishnan, J. H. Han, Y. Kim, M. S. Akbar, and J. C. Lee, “Electrical characterization and material evaluation of zirconium oxynitride gate dielectric in TaN-gated NMOSFETs with high-temperature forming gas annealing,” IEEE Transaction on Electron Devices, 50, p. 333, 2003
    81. M. T. Wang, B. Y. Y. Cheng and J. Y. M. Lee, “Temperature Dependence Degradation Mechanisms of Channel Mobility in ZrO2-Gated nMOSFETs,” accepted by Appl. Phys. Lett.
    82. S. G. Sun and J. D. Plummer, “Electron mobility in inversion and accumulation layers on thermally oxided silicon surfaces,” IEEE Transaction on Electron Devices, 27, p. 1497, 1980.
    83. C. G. Sodini, T. W. Ekstedt, and J. L. Moll, “Charge accumulation and mobility in thin dielctric MOS transistors,” Solid State Electron., 25, no. 9, p. 833, 1982.
    84. Y. Taur and T. H. Ning , Fundamentals of Modern VLSI Devices, 1st ed. Cambridge, 1998.
    85. S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the universality of inversion layer mobility in Si MOSFET's: Part I-effects of substrate impurity concentration”, IEEE Transaction on Electron Devices, 41, p. 2357, 1994.
    86. G. Baccarani, and M. R. Wordeman, “Transconductance degradation in thin-Oxide MOSFET's”, IEEE Transaction on Electron Devices, 30, p. 1295, 1983.
    87. W. J. Zhu, J. P. Han, and T. P. Ma, “Mobility measurement and degradation mechanisms of MOSFETs made with ultrathin high-k dielectrics”, IEEE Trans. Electron Devices, vol. 51, p. 98, 2004.
    88. W. J. Zhu and T. P. Ma, “Temperature dependence of channel mobility in HfO2-gated NMOSFETs”, IEEE Electron Device Lett., vol. 25, no. 2, p. 89, 2004.
    89. M. V. Fischetti, D. A. Neumayer, and E. A. Cartier, “Effective electron mobility in Si inversion layers in metal–oxide–semiconductor systems with a high- insulator: The role of remote phonon scattering”, J. Appl. Phys. 90, p. 4587, 2001.
    90. A. S. Grove and D. J. Fitzgerald, “Surface Effects on P-N Junctions: Characteristics of Surface Space-Charge Regions under Non-equilibrium Conditions,” Solid State Electron, 9, p. 783, 1966.
    91. P. L. Castro, and B. E. Doal, “Low-Temperature Reduction of Fast Surface States Associated with Thermally Oxidized Silicon,” J. Electrochem. Soc.: Solid State Science, vol. 118, no. 2, p. 280, 1971.
    92. P. C. T. Roberts And J. D. E. Beynon, “An Experimental Determination of the Carrier Lifetime near the Si-SiO2 Interface,” Solid-State Electronics, 16, p. 221, 1973.
    93. M. Randolph and L. G. Meiners, “Hole Mobilities and Surface Generation Currents of CVD Insulators on Germanium,” J. Electrochem. Soc. vol. 136, no. 9, p. 2699, 1989.
    94. C. T. Sah, Fundamentals of Solid-State Electronics, Singapore: World Scientific, 1991, p. 661.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE