研究生: |
王宗憲 Tsung-Hsien ,Wong |
---|---|
論文名稱: |
單佈性噴霧對等溫熱板之冷卻研究 Cooling with Monodisperse Sprays on an Isothermal Heated Surface |
指導教授: |
王訓忠教授
Dr. Shwin-Chung Wong |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | 噴霧冷卻 、單佈性 |
外文關鍵詞: | spray cooling |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究討論噴霧液滴對熱板之冷卻行為,藉由霧化器產生不同直徑的單佈性噴霧,實驗觀察不同液滴大小、初始板溫、液體體積流率及空氣體積流率對噴霧液滴冷卻熱板行為之影響,並分暫態與穩態來進行探討。
在固定噴霧錐角及噴霧至熱板之距離,將單佈性噴霧噴在熱板上,記錄板面上的特定點溫度隨時間的變化,並利用顯微攝影系統拍攝熱板表面液滴汽化情形與液膜產生,以判定在不同液滴條件下,汽化現象的差異。改變的參數有:液滴直徑(35、50、75、100、150、200、 250、300及350μm)、初始板溫(80、100、120℃)、液體體積流率(5.94∼59.4μl/s)及氣體體積流率(2、5、8 L/min),實驗結果發現在小液滴(35~75μm)與中大液滴(100∼350μm)散熱效果差異很大,與蒸發行為有關。大液滴當液體體積流率過大時,便會開始累積液膜,散熱行違反而變差,初始板溫越高,溫度下降較快,且最終平衡溫度也較高。板溫在80℃、100℃時,散熱能力差異不大,液體體積較小(5.94μl/s)時能有效帶走熱量,液體體積流率較大(≧5.94μl/s)時搭配氣體體積流率增加也無法有效提昇,原因是液滴在熱板上方已經形成汽化,造成無法接觸到熱板表面。板溫在120℃時,在液體體積流率較大時(≧5.94μl/s)搭配適當氣體體積流率,能有效的帶走所有的熱量,在不產生液膜前提下,液體體積流率53.8μl/s、液滴直徑50μm及氣體體積流率8 L/min在120℃時帶走最大熱量150W,此時液膜厚度最佳。明顯在熱板溫度高於液體沸點並配合適當的氣體體積流率時,能大幅提昇散熱量。
1.Humberto, C., Kubitzek, A.M.,and Frank, O., “Dynamic processes occurring during the spreading of thin liquid films produced by drop impact on hot walls,” Int. J. Heat and Fluid Flow, 20 (1999) 470-476.
2.Chandra, S. and Avedisian, C.T., “On the collision of a droplet with a solid surface,” Proc. R. Soc. Lond. A, 432, (1991) 13-41.
3.Pedersen, C. O., “An experimental study of the dynamic behavior and heat transfer characteristics of water droplets impinging upon a heated surface,” Int. J. Heat Mass Transfer, 13, (1970) 369-381.
4.Wang, C.H., Sun, C.J.,and Kuo, H.C., “An experimental investigation of heat transfer of a droplet impinging upon a hot surface,” Int. Com. Heat and Mass Transfer , 24 (1997) 65-78.
5.Choi, K. J. and Yao, S.C., “Mechanisms of film boiling heat transfer of normally impacting spray,” Int. J. Heat and Mass Transfer, 30, no.2, (1987) 311-318.
6.Chen, H. R., Chow, C. L., and Navedo, E. J., “Effect of Spray Characteristics on Critical Heat Flux in Subcooled Water Spray Cooling,” Int. J. Heat and Mass Transfer 45, (2002) 4033-4043.
7.Kitaru, S.,and Kenichi, Y., “Spray cooling characteristics of water and FC-72 under reduced and elevated gravity for space application,” Energy Conversion Engineering Conference, 1996. IECEC 96., Proceedings of the 31st Intersociety , 2 (1996) 1500-1505.
8.Um, J.-Y., Sehmbey, S. M., and Chow, C. L., “Effects of Gravity on Spray Cooling,” The 1996 ASME International Mechanical Engineering Congress & Exhibition, Atlanta, GA, USA, 11/17-22/96.
9.Anabel, M., Chow, L. C., Jian-Hua, D., Shuye, L., Dan, P. R., Jennifer, L. “Spray cooling at low system pressure,” IEEE Semiconductor Thermal Measurement and Management Symposium, 2002, Proceedings of the 2002 18th annual IEEE Semiconductor Thermal Measurement and Management Symposium, Mar 12-14 2002, San Jose, CA, 169-175.
10.Kearns, D., Jian-Hua, D., Chen, R.H.,and Chow, L.C., “A parametric study of dielectric spray cooling of a row of heaters in a narrow channel,” Semiconductor Thermal Measurement and Management, 2002. Eighteenth Annual IEEE Symposium , (2002 ) 164 –168.
11.Oliphant, K., Webb, B.W.,and McQuay, M.Q., “An experimental comparison of liquid jet array and spray impingement cooling in the non-boiling regime,” Experimental Thermal and Fluid Science, 18 (1998) 1-10.
12.Qiao, Y. M. and Chandra S., “Spray cooling enhancement by addition of a surfactant,” Int. J. Heat Transfer, Transactions ASME, 120, (1998) 211-219.
13.Chandra, S., Marzo, M.D., Qiao, Y.M., Tartarini, S.,“Effect of liquid-solid contactangle on droplet evaporation,” Int. J. Fire Safety , 27, (1996) 141-158.
14.Sehmbey, S. M., Pais R. M. and Chow, C. L., “Effect of Surface Material Properties and Surface Characteristics in Evaporative Spray Cooling,” AIAA J. Thermophysics and Heat Transfer, 6, no. 3, (1992) 505-512.
15.Pais, M.R., Chow, L.C.,and Mahefkey, E.T., “Surface roughness and its effects on the heat transfer mechanism in spray cooling,” Int. J. Heat Transfer, Transactions ASME, 114, n 1, Feb, (1992) 211-219.
16.Benjamin, R. J.,and Balakrishnan, A. R., “Nucleation site density in pool boiling of saturated pure liquids: effect of surface microroughness and surface and liquid physical properties,” Experimental Thermal and Fluid Science 15, Issue: 1, July, (1997) 32-42.
17.Estes, K.A.,and Mudawar, I., “Correlation of sauter mean diameter and critical heat flux for spray cooling of small surfaces,” Int. J. Heat and Mass Transfer, 38 (1995) 2985-2996
18.Huddle, J.J., Chow, L.C., Lei, S., Marcos, A., Rini, D.P., Lindauer, S.J., II, Bass, M.,and Delfyett, P.J., “Thermal management of diode laser arrays,” Semiconductor Thermal Measurement and Management Symposium, 2000. Sixteenth Annual IEEE, (2000) 154 -160.
19.Tilton D.E., Spray Cooling, Ph.D. Disertation, University of Kentucky, Lexington, K Y, 1989.
20.Murthy, J.Y., Yao, S.C., Gabriel, K., Kumta, P., Amon, C.H., Boyalakuntla, D., Hsieh, C.C., Jain, A., Narumanchi, S.V.J., Rebello, K. and Wu, C.F, “MEMS-Based Thermal management of Electronics Using Spray Impingement,” Proceedings of IPACK’01 The Pacific Rim/ASME International Electronic Packaging, July 8-13,(2001),Kauai,Hawaii,USA,1-12.
21.Harvie, D.J.E.,and Fletcher, D.F., “A hydrodynamic and thermodynamic simulation of droplet impacts on hot surfaces, Part I: theoretical model,” Int. J. Heat and Mass Transfer, 44 (2001) 2633-2642.
22.Bernardin, J. D.,and Stebbins, C.J.,Mudawar I., “Effects of surface roughness on water droplet impact history and heat transfer regimes,” Int. J. Heat and Mass Transfer, 40, n1, (1997) 73-88.
23.Model 3450 Vibrating Orifice Aerosol Generator 操作手冊.
24.郭博鳴,“中低雷諾數下紊流場中之液滴蒸發現象研究,”國立臺灣 大學應用力學研究所碩士論文,2001.
25.張晊源, “微小熱點之主動式冷卻,” 國立中央大學機械工程研究所,1990.
26.鍾政儒, “微小液滴冷卻微小熱點之實驗研究,” 國立中央大學機械工程研究所,2000.
27.康顧嚴, “精微噴霧冷卻實驗觀測,” 國立台灣大學應用力學研究所碩士論文, 2000.
28.陳雨村, “精微噴柱粒化現象之觀測研究”, 國立台灣大學應用力學研究所碩士論文,1999.
29.李逸才, “單佈性噴霧對熱板之冷卻研究”,□磪葀M華大學動力機械研究所碩士論文, 2002.