研究生: |
林伯樵 Po-Chiao Lin |
---|---|
論文名稱: |
磁性奈米生醫系統的發展及應用 Development of Magnetic Nano-Bio Hybrid System and Their Applications |
指導教授: |
林俊成
Chun-Cheng Lin |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 184 |
中文關鍵詞: | 奈米 、生醫 、磁性 |
外文關鍵詞: | nano, biomedical, magnetic |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Abstract
In recent decades, magnetic nanoparticle (MNP) has emerged as a promising new material in biomedical applications, particularly in clinical diagnosis and bio-molecule interactions. Due to the high surface area to volume ratio, the high ligand density of MNP surface has significantly enhanced the interaction affinity. Furthermore, the unique magnetic property of MNP facilitates the rapid separation by simple magnetic separation without centrifugation. Because of the great reduction of needed separation time, MNP prevents the bio-degradation of targets resulting from long time operation. In this thesis, diverse functionalized MNP-based platforms have been developed and applied in four important but challenging issues, including immunoassay, site-specific protein modification, screening of small molecules, and bio-separation.
The combination of antibody conjugated MNP and matrix-assisted laser desorption/ionization mass spectrometry (MALDI) successfully established a rapid and accurate method for human serum biomarker detection. To improve the protein conjugation on solid support, boronic acid (BA)-functionalized MNP was used to site-specifically assemble antibody from its Fc domain to maintain the best antibody activity on the solid surface. In addition, maltose-binding protein (MBP) was also immobilized on MNP and microarray specifically from its C terminus to show better maltose binding activity than that of conventional random conjugation MNP. We demonstrated that the protein activity can be conserved after immobilization when the importance of site-specific immobilization is applied. When protein molecule is oriented in an optimal manner on the solid surface, the native conformation is more likely to be preserved, thereby retaining higher activity.
Matrix functionalized magnetic nanoparticles (matrix@MNPs) were synthesized to serve as laser desorption/ionization elements as well as solid-phase extraction probes for simultaneous enrichment and detection of small molecules in MALDI time-of-flight mass spectrometry (MALDI-TOF MS) analysis. MNP@matrix provided a simple, rapid, and reliable quantitative assay for small molecular weight molecules by mass without either the use of an internal standard or an isotopic labeling tag. Furthermore, the affinity extraction of small molecules from complex biofluid was achieved by probe protein-conjugated MNP@matrix without laborious purification.
Owing to the high sensitivity and specificity of MNPs, various functionalized MNPs have been applied in target biomolecule, such as proteins and bacteria, separation from biofluid. Compared with conventional microbeads, functionalized MNPs give a rapid, effective, and specific platform for target molecule purification. In this dissertation research, through appropriate surface modification, MNPs present excellent performance in various biomolecule extractions, ranging from macromolecules (bacteria and proteins) to small molecules (insect suicides and low molecular weight drugs).
References
1. A. H. Lu, E. L. Salabas, F. Sch□th, Angew. Chem. Int. Ed. 2007, 46, 1222.
2. (a) C. M. Niemeyer, Angew. Chem. Int. Ed. 2001, 40, 4129. (b) I. Willner, E. Katz, Angew. Chem. Int. Ed. 2004, 43, 6042. (c) A. P. Alivisatos, Nat. Biotechnol. 2004, 22, 47.
3. K. K. Jian, Clin. Chem. 2007, 53, 2002.
4. I. Willner,B. Willner, E. Katz, Bioelectrochemistry 2007, 70, 2.
5. A. K. Gupta, M. Gupta, Biomaterials, 2005, 26, 3995.
6. N. L. Rosi, C. A. Mirkin, Chem. Rev. 2005, 105, 1547.
7. I. F. Tannock, R. P. Hill, (Eds), The Basic Science of Oncology, 3 rd edn., McGraw-Hill, Health Professions Division, New York, 1998.
8. P. Fortina, L. J. Kricka, D. J. Graves, J. Park, T. Hyslop, F. Tam, N. Halas, S. Surrey, S. S. Surrey, S. T. Waldman, TRENDS Biotechnol. 2007, 25, 145.
9. S. Santra, D. Dutta,“Nanoparticles in Optical Imaging of Cancer” in Nanomaterials for Cancer Diagnosis; Challa S. S. R.(EDs), Wiley-VCH, 2007.
10. I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi, Nature Materials, 2005, 4, 435.
11. M.-K. So, C. Xu, A. M. Loening, S. S. Gambhir, J. Rao, Nat. Biotechnol. 2006, 24, 339.
12. W. Liu, H. S. Chio, J. P. Zimmer, E. Tanaka, J. V. Frangioni, M. Bawendi, J. Am. Chem. Soc. 2007, 129, 14530.
13. A. B. Rosen, D. J. Kelly, A. J. T. Schuldt, J. Lu, I. A. Potapova, S. V. Doronin, R. B. Robinson, M. R. Rosen, P. R. Brink, G. R. Gaudette, I. S. Cohen, Stem Cells 2007, 25, 2128-2138.
14. J. M. Perez, L. Josephson, T. O’Loughlin, D. H□gemann, R. Weissleder, Nat. Biotechnol. 2002, 20, 816.
15. J. M. Perez, F. J. Simeone, Y. Saeki, L. Josephson, R. Weissleder, J. Am. Chem. Soc. 2003, 125, 10192.
16. (a) R. Weissleder, A. Moore, U. Mahmood, R. Bhorade, H. Benveniste, E. A. Chiocca, J. P. Basilion, Nat. med. 2000, 6, 351. (b) J. W. M. Bulte, S.-C. Zhang, P. van Gelderen, V. Herynek, E. K. Jordan, I. D. Duncan, J. A. Frank, Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 15256.
17. Y.-W. Jun, Y.-M. Huh, J.–S. Choi, J.-H. Lee, H.-T. Song, S. Kim, S. Yoon, K.-S. Kim, J.-S. Shin, J.-S. Suh, J. Cheon, J. Am. Chem. Soc. 2005, 127, 5732.
18. J.-H. Lee, Y.-M. Huh, Y.-W. Jun, J.-W. Seo, J.-T. Jang, H.-T, Song, S. Kim, E.-J. Cho, H.-G. Yoon, J.-S. Suh, J. Cheon, Nat. Med. 2007, 13, 95.
19. G. Zhou, H. Li, D. DeCamp, Chen, S., Shu, H., Gong, Y., Flaig, M., Gillespie, J. W., Hu, N., Taylor, P. R., Emmert-Buck, M. R., Liotta, L. A., Petricoin, E. F., 3rd, Zhao, Y. Mol. Cell. Proteomics 2002, 1, 117–124.
20. (a) T. A. Taton, C. A. Mirkin, R. L. Letsinger, Science 2000, 289, 1759. (b) J.-M. Nam, C. S. Thaxton, C. A. Mirkin, Science 2003, 301, 1884. (c) D. G. Georganopoulou, L. Chang, J.-M. Nam, C. S. Thaxton, E. J. Mufson, W. L. Klein, C. A. Mirkin, Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 2273.
21. M. M. Fuster, J. D. Esko, Nat. Rev. Cancer 2005, 5, 526.
22. J. M. de la Fuente, A. G. Barrientos, T. C. Rojas, J. Rojo, J. Canada, A. Fernandez, S. Penades, Angew. Chem. Int. Ed. 2001, 40, 2258.
23. S. I. Hakomori, Adv. Cancer. Res. 1989, 52, 257.
24. S. A. Svarovsky, Z. Szekely, Jr., J. J. Barchi, Tetrahedron: Asymmetry 2005, 16, 587.
25. A. C. de Souza, K. M. Halkes, J. D. Meeldijk, A. J. Verkleij, J. F. G. Vliegenthart, J. P. Karmerling, Eur. J. Org. Chem. 2004, 4323.
26. R. Ojeda,; J. L. de Paz, A. G. Barrientos, M. Martin-Lomas, S. Penades, Carbohydr. Res. 2007, 342, 448.
27. J. C. Paulson, O. Blixt, B. E. Collins, Nat. Chem. Bio. 2006, 2, 238.
28. S. G. Spain, L. Albertin, N. R. Cameron, Chem. Commun. 2006, 4198.
29. K. Iwabuchi, S. Yamamura, A. Prinetti, K. Handa, S.-I. Hakomori, J. Biol. Chem. 1998, 273, 9130.
30. J. M. de la Fuente, P. Eaton, A. G. Barrientos, M. Menendez, S. Penadez, J. Am. Chem. Soc. 2005, 127, 6192.
31. A. J. Reynolds, A. H. Haines, D. A. Russell, Langmuir 2006, 22, 1156.
32. (a) K. Matsuura, H. Kitakuoji, N. Sawada, H. Ishida, M. Kiso, K. Kita-Jima, K. Kobajashi, J. Am. Chem. Soc. 2000, 122, 7406. (b) S. R. Haseley, H. J. Vermeer, J. P. Kamerling, J. F. G. Vliegenthart, Proc. Natl. Acad. Sci. U.S.A. 2001, 96, 9419.
33. M. J. Hernaiz, J. M. de la Fuente, A. G. Barrientos, R. Garcia, S. Penades, Angew. Chem. Int. Ed. 2002, 41, 1554.
34. K. Aslan, J. R. Lakowicz, C. D. Geddes, Anal. Biochem. 2004, 330, 145.
35. C.-C. Lin, Y.-C. Yeh, C.-Y. Yang, G.-F. Chen, Y.-C. Chen, Y.-C. Wu, C.-C. Chen, Chem. Commun. 2003, 2920.
36. C. Guo, P. Boullanger, L. Jiang, T. Liu, Biosens. Bioelectron. 2007, 22, 1830.
37. H. Otsuka, Y. Akiyama, Y. Nagasaki, K. Kataoka, J. Am. Chem. Soc. 2001, 123, 8226.
38. S. Takae, Y. Akiyama, H. Otsuka, T. Nakamura, Y. Nagasaki, K. Kataoka, Biomacromolecules 2005, 6, 818.
39. K. D. McReynold, J. Gervay-Hague, Chem. Rev. 2007, 107, 1533.
40. N. Lund, D. R. Branch, M. Mylvaganam, D. Chark, X.-Z. Ma, D. Sakac, B. Binnington, J. Fantini, A. Puri, R. Blumenthal, C. A. Lingwood, AIDS 2006, 20, 333.
41. K. D. McReynolds, M. J. Hadd, J. Gervay-Hague, Bioconjugate Chem. 1999, 10, 1021.
42. B. Nolting, J.-J. Yu, G.-Y. Liu, S.-J. Cho, S. Kauzlarich, J. Gervay-Hague, Langmuir, 2003, 19, 6465.
43. C.-C. Lin, Y.-C. Yeh, C.-Y. Yang, C.-L. Chen, G.-F. Chen, C.-C. Chen, Y.-C. Wu, J. Am. Chem. Soc. 2002, 124, 3508.
44. Y.-J. Chen, S.-H. Chen, Y.-Y. Chieh, Y.-W. Chang, H.-K. Liao, C.-Y. Chang, M.-D. Jan, K.-T. Wang, C.-C. Lin, ChemBioChem 2005, 6, 1169.
45. H. Shimizu, M. Sakamoto, N. Nagahori, S.-I. Nishimura, Tetrahedron 2007, 63, 2418.
46. N. Nagahori, S.-I. Nishimura, Chem. Eur. J. 2006, 12, 6478.
47. X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, S. Nie, Nat. Biotechnol. 2004, 22, 969.
48. B. Dubertret, B. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, A. Libchaber, Science 2002, 298, 1759.
49. W. C. W. Chan, S. Nie, Science 1998, 281, 2016.
50. (a) X. Peng, M. C. Schlamp, A. V. Kadavanich, A. P. Alivisatos, J. Am. Chem. Soc. 1997, 119, 7019. (b) E. Hao, H. Zhang, B. Yang, H. Ren, J. Shen, J. Colloid Interface Sci. 2001, 238, 285. (c) W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, M. A. L. Gros, C. A. Larabell, A. P. Alivisatos, Nanotechnology 2003, 14, 15.
51. K. Niikura, T. Nishio, H. Akita, Y. Matsuo, R. Kamitani, K. Kogure, H. Harashima, K. Ijiro, ChemBiochem 2007, 8, 379.
52. Y. Chen, T. Ji, Z. Rosenzweig, Nano Lett. 2003, 3, 581.
53. (a) N. E. Zachara, G. W. Hart, Chem. Rev. 2002, 102, 431. (b) L. Wells, G. W. Vosseler, H. W. Hart, Science 2001, 291, 2376.
54. A. Robinson, J.-M. Fang, P.-T. Chou, K.-W. Liao, R.-M. Chu, S.-J. Lee, ChemBioChem 2005, 6, 1899.
55. Z. Dai, A.-N. Kawde, Y. Xiang, J. T. La Belle, J. Gerlach, V. P. Bhavanandan, L. Joshi, J. Wang, J. Am. Chem. Soc. 2006, 128, 10018.
56. P. Babu, S. Sinha, A. Surolia, Bioconjugate Chem. 2007, 18, 146.
57. G. Reiss, A. H□tten, Nat. Mater. 2005, 4, 725.
58. H. Gu, K. Xu, C. Xu, B. Xu, Chem. Commun. 2006, 941.
59. Y.-S. Lin, P.-J. Tsai, M.-F. Weng, Y.-C. Chen, Anal. Chem. 2005, 77, 1753.
60. X.-L. Sun, W. Cui, C. Haller, E. L. Chaikof, ChemBioChem, 2004, 5, 1593.
61. J. M. de la Fuente, D. Alcantara, P. Eaton, P. Crespo, T. C. Rojas, A. Fernandez, A. Hernando, S. Penades, J. Phys. Chem. B. 2006, 110, 13021.
62. D. Hor□k, M. Babič, P. Jendelov□, V. Herynek, M. Trchov□, Z. Pientka, E. Pollert, M. H□jek, E. Sykov□, Bioconjugate Chem. 2007, 18, 635.
63. (a) A. B. Kantor, W. Wang, H. Lin, H. Govindarajan, M. Anderle, A. Perrone, C. Becker, Clin. Immunol. 2004, 111, 186. (b) E. Petricoin, J. Wulfkuhle, V. Espina, L. A. Liotta, J. Proteome Res. 2004, 3, 209.
64. (a) L. A. Liotta, E. C. Kohn, Nature 2001, 411, 375. (b) S. Hanash, Nature 2003, 422, 226.
65. N. L. Anderson, N. G. Anderson, Mol. Cell. Proteomics 2002, 1, 845.
66. ,R. Edwards (Eds), Immunodiagnostics, Oxford University Press Inc., New York, 1994, pp. 1-43.
67. J. P.Gosling (Eds), Immunoassays, Oxford University Press Inc., New York, 2000, pp 1-14.
68. J. Wang, Small 2005, 1, 1036.
69. (a) C. Xu, K. Xu, H. Gu, X. Zhong, Z. Guo, R. Zheng, X. Zhang, B. Xu, J. Am. Chem. Soc. 2004, 126, 3392. (b) H. Gu, P. L. Ho, K. W. Tsang, L. Wang, B. Xu, J. Am. Chem. Soc. 2003, 125, 15702.
70. N. Tang, P. Toronatore, S. R. Weinberger, Mass Spectrometry Rev. 2004, 23, 34.
71. Y. S. Kang, S. Risbud, J. F. Rabolt, P. Stroeve, Chem. Mater. 1996, 8, 2209.
72. M. B. Pepys, J. Herbert, W. L. Hutchinson, G. A. Tennent, H. J. Lachmann, J. R. Gallimorem, L. B. Lovat, T. Bartfai, A. Alanine, C. Hertel, T. Hoffmann, R. Jakob-Roeten, R. D. Norcross, J. A. Kemp, K. Yamaura, M. Suzuki, G. W. Taylor, S. Murray, D. Thompson, A. Purvis, S. Kolstoe, S. P. Wood, P. N. Hawkins, Nature 2002, 417, 254.
73. U. A. Kiernan, D. Nedelkov, K. A. Tubbs, E. E. Niedekofler, R. W. Nelson, Proteomics 2004, 4, 1825.
74. M. Zheng, X. Huang, J. Am. Chem. Soc. 2004, 126, 12047.
75. K. L. Dombi, N. Gresang, C. Richert, Synthesis 2002, 6, 816.
76. (a) G. Berton, R. Cordiano, R. Palmier, S. Pianca, V. Pagliara, P. Palatini, Am. Heart. J. 2003, 145, 1094. (b) E. Kuhn, J. Wu, J. Karl, H. Liao, W. Zolg, B. Guild, Proteomics 2004, 4, 1175.
77. C. M. Uhlar, A. S. Whitehead, Eur. J. Biochem. 1999, 265, 501.
78. (a) S. Solakidi, A. Dessypris, G. P. Stathopoulos, G. Androulakis, C. E. Sekeris, Clin. Biochem. 2004, 37, 56. (b) J. S. Jang, H. Y. Chao, Y. J. Lee, W. S. Ha, H. W. Kim, Oncol. Res. 2004, 14, 491.
79. N. Delaunay-Bertoncini, M.-C. Hennion, J. Pharm. Biomed. Anal. 2004, 34, 717.
80. A. M. Wu, P. D. Senter, Nat. Biotechnol. 2005, 23, 1137.
81. M. F. Clark, R. M. Lister, M. Bar-Joseph, Method Enzymol. 1986, 118, 742.
82. J. A. Maynard, R. Myhre, B. Roy, Curr. Opin. Chem. Biol. 2007, 11, 306.
83. A. Watzke, M. Khn, M. Gutierrez-Rodriguez, R. Wacker, H. Schrder, R. Breinbauer, J. Kuhlmann, K. Alexandrov, C. M. Niemeyer, R. S. Goody, H. Waldmann, Angew. Chem. Int. Ed. 2006, 45, 1408.
84. (a) M. M. C. Sun, K. S. Bean, C. G. Cerveny, K. J. Hamblett, R. S. Blackmore, M. Y. Torgov, F. G. M.Handley, N. C. Ihle, P. D. Senter, S. C. Alley, Bioconjugate Chem. 2005, 16, 1282. (b) I.-H. Cho, E.-W. Paek, H. Lee, J. Y. Kang, T. S. Kim, S.-H. Paek, Anal. Biochem. 2007, 365, 14.
85. (a) C. Kaittanis, S. A. Naser, J. M. Perez, Nano. Lett. 2007, 7, 380. (b) Y. Jung, J. M. Lee, H. Jung, B. H. Chung, Anal. Chem. 2007, 79, 6534.
86. (a) D. J. O'Shannessy, R. H. Quarles, J. Immunol. Methods 1987, 99, 153. (b) D. S. Hage, C. A. C. Wolfe, M. R. Oates, Bioconjugate Chem. 1997, 8, 914.
87. R. A. Scheck, M. B. Francis, ACS Chem. Biol. 2007, 2, 247.
88. J. Yan, H. Fang, B. Wang, Med. Res. Rev. 2005, 25, 490.
89. K. Sparbier, T. Wenzel, M. Kostrzewa, J. Chromatogr. B 2006, 840, 29.
90. (a) T. Miyahara, K. Kurihara, J. Am. Chem. Soc. 2004, 126, 5684. (b) M. Dowlut, D. G. Hall, J. Am. Chem. Soc. 2006, 128, 4226.
91. M. D. S□rensen, R. Martins, O. Hindsgaul, Angew. Chem. Int. Ed. 2007, 46, 2403.
92. T. Cha, A. Guo, X.-Y. Zhu, Proteomics 2005, 5, 416.
93. (a) K.-Y. Tomizaki, K. Usui, H. Mihara, ChemBioChem 2005, 6, 782. (b) A. D. De Araujo, J. M. Palomo, J. Cramer, M. Kohn, H. Schroder, R. Wacker, C. Niemeyer, K. Alexandrov, H. Waldmann, Angew. Chem. Int. Ed. 2006, 45, 296.
94. G. T. Hermanson, Bioconjugate Techniques, Academic Press, San Diego, 1996.
95. G. A. Lemieux, C. R. Bertozzi, Trends Biotechnol. 1998, 16, 506.
96. L. Wang, P. G. Schultz, Angew. Chem. Int. Ed. 2005, 44, 34.
97. T. W. Muir, Annu. Rev. Biochem. 2003, 72, 249.
98. (a) T. J. Tolbert, C.-H. Wong, J. Am. Chem. Soc. 2000, 122, 5421. (b) J. A. Pezza, K. N. Allen, D. R. Tolan, Chem. Commun. 2004, 2412. (c) T. Durek, K. Alexandrov, R. S. Goody, A. Hildebrand, I. Heinemann, H. Waldmann, J. Am. Chem. Soc. 2004, 126, 16368.
99. (a) M. Lovrinovic, R. Seidel, R. Wacker, H.Schroeder, O. Seitz, M. Engelhard, R. S. Goody, C. M. Niemeyer, Chem. Commun. 2003, 822. (b) M.-L. Lesaicherre, R. Y. P. Lue, G. Y. J. Chen, Q. Zhu, S. Q. Yao, J. Am. Chem. Soc. 2002, 124, 8768. (c) J. A. Camarero, Y. Kwon, M. A. Coleman, J. Am. Chem. Soc. 2004, 126, 14730.
100. (a) V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem., Int. Ed. 2002, 41 ,2596. b) C. W. Torn□e, C. Christensen, M. Meldal, J. Org. Chem. 2002, 67, 3057. c) For review: V. D. Bock, H. Hiemstra, J. H. Van Maarseveen, Eur. J. Org. Chem. 2006, 51.
101. (a) H. C. Kolb, K. B. Sharpless, Drug Discov. Today 2003, 8, 1128. (b) A. Krasinski, Z. Radic, R. Manetsch, J. Raushel, P. Taylor, K. B. Sharpless, H. C. Kolb, J. Am. Chem. Soc. 2005, 127, 6686. (c) A. E. Speers, B. F. Cravatt, Chem. Biol. 2004, 11, 535. (d) M. C. Bryan, F. Fazio, H.-K. Lee, C.-Y. Huang, A. Chang, M. D. Best, D. A. Calarese, O. Blixt, J. C. Paulson, D. Burton, I. A. Wilson, C.-H. Wong, J. Am. Chem. Soc. 2004, 126, 8640.
102. (a) T. R. Chan, R. Hilgraf, K. B. Sharpless, V. V. Fokin, Org. Lett. 2004, 6, 2853. (b) Q. Wang, T. R. Chan, R. Hilgraf, V. V. Fokin, K. B. Sharpless, M. G. Finn, J. Am. Chem. Soc. 2003, 125, 3192.
103. S. Punna, J. Kuzelka, Q. Wang, M. G. Finn, Angew. Chem. Int. Ed. 2005, 44, 2215.
104. N. V Adikesavan, S. S. Mahmood, S. Stanley, Z. Xu, N. Wu, M. Thibonnier, M. Shoham, Acta Crystallogr., Sect. F, 2005, 61, 341.
105. Y. C. Cao, R. Jin, J.-M. Nam, C. S. Thaxton, C. A. Mirkin, J. Am. Chem. Soc. 2003, 125, 14676.
106. (a) M. P. Jr. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, Science 1998, 281, 2013.
107. A. Dyai, K. Loos, M. Noto, S. W. Chang, C. Spagnoli, K. V. P. Shafi, A. Ulman, M. Cowman, R. A. Gross, J. Am. Chem. Soc. 2003, 125, 1684.
108. M. A. B. Meador, E. F. Fabrizio, F. Ilhan, A. Dass, G. Zhang, P. Vassilaras, J. C. Johnston, N. Leventis, Chem. Mater. 2005, 17, 1085.
109. J. Choi, J. I. Lee, Y. B. Lee, J. H. Hong, I. S. Kim, Y. K. Park, N. H. Hur, Chem. Phys. Lett. 2006, 428, 125.
110. C. Xu, K. Xu, H. Gu, R. Zheng, H. Liu, X. Zhang, Z. Guo, B. Xu, J. Am. Chem. Soc. 2004, 126, 9938.
111. A. Natarajan, W. Du, C.-Y. Xiong, G. L. DeNardo, S. J. DeNardo, J. Gervay-Hague, Chem. Commun., 2007, 695.
112. A. E. Speers, B. F. Cravatt, J. Am. Chem. Soc. 2005, 127,10018.
113. A. J. Link, D. A. Tirrel, J. Am. Chem. Soc. 2003, 125, 11164.
114. N. K. Devaraj, G. P. Miller, W. Ebina, B. Kakaradov, J. P. Collman, E. T. Kool, C. E. D. Chidsey, J. Am. Chem. Soc. 2005, 127, 8600.
115. (a) M. A. White, J. A. Johnson, J. T. Koberstein, N. J. Turro, J. Am. Chem. Soc. 2006, 128, 11356. (b) D. A. Fleming, C. J. Thode, M. E. Williams, Chem. Mater. 2006, 18, 2327.
116. (a) V. O. Rodionov, V. V. Fokin, M. G. Finn, Angew. Chem. Int. Ed. 2005, 44, 2210.
117. H. Gohlke, G. Klebe, Angew. Chem. Int. Ed. 2002, 41, 2644.
118. R. Tian, S. Xu, X. Lei, W. Jin, M. Ye, H. Zou, Trends Anal. Chem. 2005, 24, 810.
119. N. Mano, K. Sato, J. Goto, Anal. Chem. 2006, 78, 4668.
120. M. A. Martinez-Gomez, S. Sagrado, R. M. Villanueva-Camanas, M. J. Medina-Hernandez, Electrophoresis 2006, 27, 3410.
121. D. L□ssner, H. Kessler, G. Thumshirn, C. Dahmen, B. Wiltschi, M. Tanaka, W. Knoll, E.-K. Sinner, U. Reuning, Anal. Chem. 2006, 78, 4524.
122. J. Feeney, Angew. Chem. Int. Ed. 2000, 39, 290.
123. D. A. Annis, N. Nazef, C.-C. Chuang, M. P. Scott, H. M. Nash, J. Am. Chem. Soc. 2004, 126, 15495.
124. L.-S. Huang, Y.-Y. Chien, S.-H. Chen, P.-C. Lin, K.-Y. Wang, P.-H. Chou, C.-C. Lin, Y.-J. Chen, In Nanomaterials for cancer diagnosis; Kumar, Challa S. S. R. (Eds.), Wiley-VCH: New York, 2006; Vol. 7, p338-376.
125. (a) A. W. T. Bristow, K. S. Webb, J. Am. Soc. Mass Spectrum., 2003, 14,1086-1098. (b) M. L. Gross, J. Am. Soc. Mass. Spectrum., 1994, 5, 57. (c) J. H. Beynon, Advances in Mass Spectrometry, 1959, 328.
126. (a) Tandem Mass Soectrinetry, McLafferty, F. W., Eds., Wiley-VCH: New York, 1983. (b) K. L. Busch, G. L. Glish, S. A. McLuckey, Mass Spectrometry/Mass Spectrometry: Techniques and Application of Tandem Mass Spectroemtry, Wiley-VCH: New York, 1988.
127. (a) H. Pasch, W. Schrepp, MADLI-TOF Mass Spectrometry of Synthetic Polymers, Springer: New York. 2002. (b) B. L. M. V. Baar, FEMS Microbiology Reviews, 2000, 24, 193. (c) D. J. Harvey, Mass Spectrometry Reviews, 1999, 18, 349.
128. (a) Y.-R. Shu, A.-K. Su, J.-T. Liu, C.-H. Lin, Anal. Chem. 2006, 78, 4697. (b) T. Kinumi, T. Saisu, M. Takayama, H. Niwa, J. Mass Spectrom. 2000, 35, 417. (c) G. McCombie, R. Knochenmuss, Anal. Chem. 2004, 76, 4990.
129. (a) J. E. Dally, J. Gorniak, R. Bowie, C. M. Bentzley, Anal. Chem. 2003, 75, 5046. (b) L. H. Choen, A. I. Gusev, Anal. Bioanal. Chem. 2002, 373, 571. (c) Z. Guo, Q. Zhang, H. Zou, B. Guo, J. Ni, Anal. Chem. 2002, 74, 1637.
130. R. Knochenmuss, R. Zenobi, Chem. Rev. 2003, 103, 441.
131. (a) J. Wei, J. M. Buriak, G. Siuzdak, Nature 1999, 399, 243. (b) J.-C. Lee, C.-Y. Wu, J. V. Apon, G. Siuzdak, C.-H. Wong, Angew. Chem. Int. Ed. 2006, 45, 2753.
132. Y.-S. Lin, Y.-C. Chen, Anal. Chem. 2002, 74, 5793.
133. Y.-F. Huang, H.-T. Chang, Anal. Chem. 2006, 78, 1485.
134. E. P. Go, J. V. Apon, G. Luo, A. Saghatelian, R. H. Daniels, V. Sahi, R. Dubrow, B. F. Cravatt, A. Vertes, G. Siuzdak, Anal.Chem. 2005, 77, 1641.
135. M. E. Taylor, K. Drickamer, Introduction to Glycobiology, Oxford University Press: New York. 2003.
136. F. Svec, J. M. Fr□chet, Science, 1996, 273, 205.
137. Y. D. Ivanov, V. M. Govorun, V. A. Bykov, A. I. Archakov, Proteomics, 2006, 6, 1399.
138. Y.-Y. Chieh, M.-D. Jan, A. K. Adak, H.-C. Tzeng, Y.-P. Lin, Y.-J. Chen, K.-T. Wang, C.-T. Chen, C.-C. Chen, C.-C. Lin, ChemBioChem, 2008, 9, 1100.
139. R. Hergt, S. Rutz, R. M□ller, M. Zeisberger, J. Phys.; Condens. Matter, 2006, 18, s2919.
140. M. I. Shukoor, F. Natalio, M. N. Tahir, V. Ksenofontov, H. A. Therese, P. Theato, H. C. Schr□der, W. E. G. M□ller, W. Tremel, Chem. Commun. 2007, 4677.
141. S. Palmacci, L. Josephson, (1993) Synthesis of polysaccharide covered superparamagnetic oxide colloids, U.S. Patent 5,262,176.
142. M. A. Karmali, M. Petrie, C. Lim, P. C. Fleming, G. S. Arbus, H. Lior, J. Infect. Dis. 1985, 151, 775.
143. M. Naiki, D. M. Marcus, Biochem. Biophys. Res. Commun. 1974, 60, 1105.
144. A. A. Lindberg, J. E. Brown, N. Str□mberg, M. Westling-Ryd, J.-E. Schultz, K.-A. Karlsson, J. Biol. Chem. 1987, 262, 1779.
145. G. E. Sato, S. J. Hultgren, J. Bacteriol. 1999, 181, 1059.
146. (a) S. L. Harris, P. A. Spears, E. A. Havell, T. S. Hamrick, J. R. Horton, P. E. Orndorff, J. Bacteriol. 2001, 183, 4099. (b) K. A. Krogfelt, H. Bergmans, P. Klemm, Infect. Immun. 1990, 58, 1995.